

XC1008D-XC1011DXC1015D and VGC810 (rel. 1.5A)

INDEX

1. GENERAL WARNING 4
1.1 A PLEASE READ BEFORE USING THIS MANUAL 4
1.2 Safety Precautions 4
2. WIRING CONNECTIONS 5
2.1 XC1008D 5
2.2 XC1011D 6
2.3 XC1015D 7
2.4 DESCRIPTIONS OF THE WIRING CONNECTIONS 7
3. USER INTERFACE 9
3.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 9
3.2 DISPLAY VISUALIZATION 10
3.3 Programming 12
4. SERVICE MENU 15
4.1 How to enter the Service menu 15
4.2 How to program an instrument using a HOT KEY 16
4.3 How to see the values of analog outputs 16
4.4 How to see the status of the relays 17
4.5 COMPRESSOR SERVICE SUB- MENU - FOR MAINTENANCE SECTIONS 17
4.6 HOW TO SEE THE STATUS OF DIGITAL INPUTS 19
4.7 How to see the values of the probes 20
4.8 How to set time and date 20
5. ALARMS 21
5.1 Menu Active alarms 21
5.2 ACTIVE ALARM LOG MENU 22
5.3 ACTIVE ALARM LOG MENU 23
6. PARAMETERS 23
7. REGULATION 42
7.1 NEUTRAL ZONE ADJUSTMENT - ONLY FOR COMPRESSORS 42
7.2 PROPORTIONAL BAND ADJUSTMENT - FOR COMPRESSORS AND FANS 43
8. SCREW COMPRESSORS 45
8.1 ReguLation with screw compressors like Bitzer/ Hanbell/ RefComp etc 45
8.2 REGULATION WITH SCREW COMPRESSORS LIKE FRASCOLD 45
9. ANALOG OUTPUTS FOR INVERTER 47
9.1 COMPRESSOR MANAGEMENT 47
9.2 FANS MANAGEMENT WITH INVERTER-1 FANS GROUP WITH INVERTER MODE, OTHERS ON IN ON/OFF MODE 49
9.3 MANAGEMENT OF ALL FANS WITH INVERTER - PROPORTIONAL INVERTER 49
10. ALARM LIST 50
10.1 ALARM CONDITIONS - SUMMARY TABLE 51
11. MOUNTING \& INSTALLATION 53
12.1 XC1000D DIMENSIONS 54
12.2 VG810 DIMENSIONS AND MOUNTING 55
12. ELECTRICAL CONNECTIONS 56
13.1 PROBES CONNECTION 56
13. RS485 SERIAL LINK 56
14. TECHNICAL FEATURES 56
15. DEFAULT SETTING 58

1. GENERAL WARNING

1.1 \triangle Please read before using this manual

- This manual is part of the product and should be kept near the instrument for easy and quick reference.
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device.
- Check the application limits before proceeding.

1.2 Safety Precautions

- Check the supply voltage is correct before connecting the instrument.
- Do not expose to water or moisture: use the controller only within the operating limits avoiding sudden temperature changes with high atmospheric humidity to prevent formation of condensation
- Warning: disconnect all electrical connections before any kind of maintenance.
- The instrument must not be opened.
- In case of failure or faulty operation send the instrument back to the distributor or to "DIXELL s.r.l." (see address) with a detailed description of the fault.
- Consider the maximum current which can be applied to each relay (see Technical Data).
- Ensure that the wires for probes, loads and the power supply are separated and far enough from each other, without crossing or intertwining.
- Fit the probe where it is not accessible by the end user.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with inductive loads could be useful.

2. Wiring connections

2.1 XC1008D

XC1008D

SAFETY DIGITAL INPUTS

CONFIG. DIGITAL INPUT
ANALOG OUTPUTS

OUTPUT RELAYS

NOTE: according to the models the digital inputs: $(3-18)$ and ($52-55$) can operates at $230 \mathrm{~V} / 120 \mathrm{~V}$ or 24 V . Verify on the controller which is the right voltage that can be applied.

ATTENTION

Configurable digital inputs (term. 36-43) are free voltage.

2.2 XC1011D

XC1011D
 SAFETY DIGITAL INPUTS

CONFIG.
DIGITAL INPUT

ANALOG OUTPUTS

OUTPUT RELAYS

NOTE: according to the models the digital inputs: (3-24) and (52-59) can operates at 230V/120V or 24 V . Verify on the controller which is the right voltage that can be applied.

ATTENTION

Configurable digital inputs (term. 36-43) are free voltage.
2.3 XC1015D

XC1015D

SAFETY DIGITAL INPUTS

CONFIG.
 DIGITAL INPUT

SAFETY DIGITAL INPUTS
ANALOG OUTPUTS

OUTPUT RELAYS

NOTE: according to the models the digital inputs: (3-26) and (46-59) can operates at 230V/120V or 24 V . Verify on the controller which is the right voltage that can be applied.

ATTENTION

Configurable digital inputs (term. 36-43) are free voltage.

2.4 Descriptions of the wiring connections

1-2 Power supply: WARNING: THE SUPPLY IS 24Vac/dc

3-26 Digital inputs for safeties of compressors and fans - main voltage. When an d. i. is activated, the corresponding output is switched OFF. Please note: the digital input 1 is linked to the relay 1 (C1); d.i. 2 to relay 2 (C2), etc.

30-31Analog output 4 ($0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ depends on the parameter 3 Q 1)

31-32 Analog output 3 ($0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ depends on the parameter 3Q1)
34-35 Analog output 1 ($0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ depends on the parameter 1Q1)
33-34 Analog output 2 ($0-10 \mathrm{~V}$ or 4-20mA depends on the parameter 1Q1)
36-37 Configurable digital input 1 (free voltage)
38-39 Configurable digital input 2 (free voltage)
40-41 Configurable digital input 3 (free voltage)
42-43Configurable digital input 4 (free voltage)
46-51 Digital inputs for safeties of compressors and fans - main voltage. When an d. i. is activated, the corresponding output is switched OFF. Please note: the digital input 1 is linked to the relay 1 (C1); d.i. 2 to relay 2 (C2), etc.

52-53 Low pressure-switch input for circuit 1: input at the same voltage of loads.
54-55 High pressure-switch input for circuit 1: input at the same voltage of loads.
56-57 Low pressure-switch input for circuit 2: input at the same voltage of loads.
58-59 High pressure-switch input for circuit 2: input at the same voltage of loads.

60-61 RS485 output

62 -(63) or (68): Suction probe input for circuit 1:
with Al1 = cur or rat use 62 -68
with Al1 = ntc or ptc use $62-63$
64 -(63) or (68): Suction probe input for circuit 2:
with Al1 = cur or rat use 64-68
with Al1 = ntc or ptc use 64-63
65 -(66) or (69): Condensing probe input for circuit 1 :
with A18 = cur or rat use 65-69
with Al8 = ntc or ptc use 65-66
67 -(66) or (69): Condensing probe input for circuit 2:
with A18 = cur or rat use 67-69
with Al8 = ntc or ptc use 67-66
70-71 Auxiliary probe 1
71-72 Auxiliary probe 2
73-74 Auxiliary probe 3
74-75 Auxiliary probe 4
78-79-80 Keyboard
81-82-83: Safety relay: XC1000D off or damaged: 81-82 closed XC1000D working: 81-83 closed

84-85-86: Alarm relay:

88-103 and 106-119 Relay configurable outputs for compressors, fans, alarms and aux. The functioning of the relays depends on the setting of the correspondent $\mathrm{C}(\mathrm{i})$.

3. User interface

3.1 What is displayed when the keyboard is connected

Where:
release: Rel Firmware XC1000D / release OS Visograph / release Program Visograph

Push the ENTER key to enter the standard visualization

(1) Symbol of compressor: it's present for the following configuration of the parameter C 0. $C 0=1 A 0 D ; 1 A 1 D, 2 A 0 D, 2 A 1 D, " 2 A 2 D$
(2) Status of the suction section:

The pressure (temperature) is below the regulation band and the capacity of the plant is decreasing
1 The pressure (temperature) is above the regulation band and the capacity of the plant is increasing
(3) Analog output status for frequency compressor: it's present only if a frequency compressor is used. It displays the percentage of the analog output driving the inverter. Not present if the "free" analog output is used.
(4) Suction pressure (temperature) set point: : it's present for the following configuration of the parameter C0: 1A0D; 1A1D, 2A0D, 2A1D, "2A2D
(5) Current value of suction pressure (temperature): it's present for the following configuration of the parameter C0: 1A0D; 1A1D, 2A0D, 2A1D, "2A2D
(6) Alarm: it's display when an alarm happens in suction section
(7) Alarm: it's display when an alarm happens in delivery section
(8) Delivery pressure (temperature) set point: it's present for the following configuration of the parameter C0: 0A1D; 1A1D, 0A2D, 1A2D, "2A2D
(9) Current value of delivery pressure (temperature): it's present for the following configuration of the parameter C0: 0A1D; 1A1D, 0A2D, 1A2D, "2A2D
(10) Analog output status for inverter for fan: it's present only if an inverter for fan is used. It displays the percentage of the analog output driving the inverter.
Not present if the "free" analog output is used.
(11) Status of the delivery section:

The condenser pressure (temperature) is below the regulation band and the number of fans is decreasing

> The condenser pressure (temperature) is above the regulation band and the number of fans is increasing
(12) Number of fans activated / Total number of fans it's present for the following configuration of the parameter C0.
C0: 0A1D; 1A1D, 0A2D, 1A2D, "2A2D
NOTE: the total number of fans is referred to the number of available fans. Fans that are in "maintenance" or that are stopped by their own digital input aren't included.
(13) Symbol of fan: it's present for the following configuration of the parameter C 0 . C0: 0A1D; 1A1D, 0A2D, 1A2D, "2A2D
(14) Number of compressors and steps activated / Total number of compressors and steps. it's present for the following configuration of the parameter C0.
$C 0=1 A 0 D ; 1 A 1 D, 2 A 0 D, 2 A 1 D, 2 A 2 D$
NOTE: the total number of compressors is referred to the number of available compressors. Compressors that are in "maintenance" or that are stopped by their own digital input aren't included.

UNIT Measurement unit: to switch the probe visualization and set point from pressure to temperature and vice versa

OFF1 To switch the controller off: hold pushed for 10s to switch the controller off (it's enabled only if the parameter OT9 $=\mathrm{yES}$)

E51 Energy saving: hold pushed for 10s to enable the energy saving cycle (the SET label starts flashing)

CIR2 Circuit 2: to pass to visualization of the variables of the second circuit, It's present for the following configuration of the parameter C0: 0A2D; 2A0D, 2A2D.

3.3 Programming

Push the PARAMM key and the programming menu is entered.

Parameters are collected in two menu:
Pr1: menu of parameters without password. Press the Pr1 key to enter.
Pr2: menu of parameters with password. If the password is enabled, use the following procedure to put it.

3.3.1 Password introduction to enter Pr2

If the password is enabled, by pushing the Pr2 key the following interface is displayed:

1. Push the SET key.
2. Use the UP and DOWN keys to set the password
3. Push the SET key to confirm it
4. The following message is displayed

5. Push the ENTER key to enter in Pr2 menu

3.3.2 Parameters grouping

The parameters are collected in sub-menu according to the following interface.

The parameters sub menu are the following:

Set Point (SETC1-SETF2)

Compressor Rack setup (C0-C18, C34-C36)
Regulation (C37-C44)
Display (C45-C46)
Analog Inputs of regulation (Ai1-Ai15)
Analog Inputs of auxiliary (Ai16-Ai28)
Safety Digital Inputs (Di2-Di13)
Digital Inputs (Di14-Di27)
Display (C45-C44)
Compressor Action (CP1-CP8)
Safety Compressors (CP9-CP18)
Fan Action (F1-F8)
Safety Fans (F9-F10)
Energy Saving (HS1-HS14)
Compressor Alarms (AC1-AC19)

Fan Alarms (AF1-AF17)
Dynamic Setpoint Suction (01-08)
Condenser Set point (09-014)
Analog outputs configuration (1Q1, 3Q1)
Analog Outputs 1 (1Q1-1Q26)
Analog Outputs 2 (2Q1-2Q25)
Analog outputs 3 (3Q2-3Q26)
Analog outputs 4 (4Q1-4Q25)
Auxiliary Outputs (AR1-AR12)
Other (oT1-OT9)
NOTE: some sub menu could be absent depending on the model.

Push the SET key to enter a menu and the parameter with their value will be displayed: see below picture.

Push the SET key and use the UP and DOWN keys to modify the value.
Then push the SET key to store the new value and move to the following parameter.
NOTE: the Pr2 or Pr1 message is present only in Pr2 menu.
It is possible to modify the level of each parameter changing Pr2 \rightarrow Pr1 or vice versa.
NOTE: Pushing the EXIT button the initial screen shot is displayed.

4. SERVICE MENU

The service menu collect the main functions of the controller.
From the Service menu is possible to:

- see the values of analog outputs
- see the status of compressor relay
- operate a maintenance section
- see the status of safety and configurable digital inputs
- see the values of the probes
- set the real time clock
- use the HOT KEY to program the instrument or to program the HOT KEY
- set the password and enable it for some menu
- set the instrument language.

4.1 How to enter the Service menu

From the main display screen push the SERVICE button and the SERVICE menu is entered. See below picture:

The Service sub-menu are the following:

ANALOG OUTPUTS

RELAY OUTPUTS

COMPRESSOR SERVICE
DIGITAL INPUTS
PROBES
PASSWORD
LANGUAGE
Select one of them with the UP or DOWN keys then push the SET key to enter the sub-menu

4.2 How to program an instrument using a HOT KEY

The XC1000D uses a standard Dixell HOT KEY (cod. DK00000100).

4.2.1 How to program the HOT KEY.

1. Program one controller with the front keypad.
2. When the controller is ON, insert the "Hot key". Enter the SERVICE menu and push the UPL key. The display will shows the message "PLEASE WAIT".
3. The instrument will shows during 10 sec :
"END": the programming phase is ended successfully the "ERROR" message is displayed for failed programming. In this case push again the UPL key if you want to restart the upload again.

4.2.2 How to program an instument using a HOT KEY

1. Switch off the controller or enter the SERVICE menu.
2. Insert a programmed "Hot Key" into the 5 PIN receptacle
3. Turn the controller on, or push the DOL key of the SERVICE menu.
4. Automatically the parameter list of the "Hot Key" is downloaded into the Controller memory, the "doL" message is blinking. The display will shows the message "PLEASE WAIT".
5. The instrument will shows during 10 sec :
"END": the programming phase is ended successfully. Remove the "Hot Key", the XC1000D will restart working with the new parameters. NOTE: until the "Hot Key" is inserted, the instrument doesn't start the regulation. the "ERROR" message is displayed for failed programming. In this case push again the UPL key if you want to restart the upload again.After 10 seconds the instrument will restart working with the new parameters.

4.3 How to see the values of analog outputs

Procedure:

1. Enter the SERVICE menu
2. Select ANALOG OUTPUTS sub-menu
3. Push the SET key.

The ANALOG OUTPUTS sub-menu displays the status of the analog outputs of the controller, with the following layout:

ANALOG OUTPUT 1	68	$\%$	\triangleq
ANALOG OUTPUT 2	50	$\%$	
ANALOG OUTPUT 3	100	$\%$	
ANALOG OUTPUT 4	85	$\%$	

This outputs can be used to drive an external inverter or to repeat a main probe, by means of a signal $4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$.

4.4 How to see the status of the relays

Procedure:

1. Enter the SERVICE menu
2. Select LOADS STATUS
3. Push the SET key.

The LOADS STATUS sub-menu displays the status of the relays in the following format:

With this meaning:
First column: number of relay; second column: configuration; third column: status.

4.5 COMPRESSOR SERVICE SUB- MENU - For maintenance sections

The COMPRESSOR SERVICE menu could be protected by password. See chapter 3.3.1.
By means of the COMPRESSOR SERVICE sub-menu is possible to perform a maintenance section, consisting on:

- disabled an output
- check and (eventually) erase the running hour of a load.

4.5.1 How to enter the "COMPRESSOR SERVICE"submenu.

Procedure:

1. Enter the SERVICE menu
2. Select COMPRESSOR SERVICE sub-menu
3. Push the SET key.

The COMPRESSOR SERVICE sub-menu displays the status of the relays with the following layout:

4.5.2 How to disabled/enabled an output during a maintenance section.

To disabled an output during a maintenance session means to exclude the output from the regulation:
To do it act as in the following

1. Enter the COMPRESSOR SERVICE sub-menu, as described in the previous paragraph.
2. Select the load by means of the UP and DOWN keys.
3. Push the SET key, then use the UP and DOWN keys to move the status to ON to OFF and vice versa.
4. Confirm the selection by means of the SET key.

4.5.3 Regulation with some outputs disabled.

If some outputs are disabled they don't take part to the regulation, so the regulation goes on with the other outputs.

4.5.4 How to display the running hours of a load.

The controller memorises the running hours of each load.
To see how long a load has been working enter the COMPRESSOR SERVICE sub-menu.
The running hour are displayed with the following layout:

4.5.5 How to erase the running hours of a load

After a maintenance session usually is useful to erase the running our of a load.
To do it act as in the following

1. Enter the COMPRESSOR SERVICE sub-menu, as described in the paragraph. 4.5.1.
2. Select the load by means of the UP and DOWN keys.
3. Push the SET key, then use the DOWN key to decrease the running hour of the load..
4. Confirm the setting by means of the SET key.

To exit: push the EXIT key to come back to the SERVICE menu.

4.6 How to see the status of digital inputs

Procedure:

1. Enter the SERVICE menu
2. Select DIGITAL INPUTS sub-menu
3. Push the SET key.

The DIGITAL INPUTS sub-menu displays the status of the safety and configurable digital inputs, with the following layout:

HP, LP and configurable inputs

4.7 How to see the values of the probes

Procedure:

1. Enter the SERVICE menu
2. Select PROBES sub-menu
3. Push the SET key.

The PROBES sub-menu displays the probe values, with the following layout:

To change the measurement unit for the probe PB1, PB2, PB3, PB4, push UNIT button.

4.8 How to set time and date

Procedure:

1. Enter the SERVICE menu
2. Select REAL TIME CLOCK sub-menu
3. Push the SET key.

The REAL TIME CLOCK sub-menu displays time and date, with the following layout:

5. Set the day by means of the UP and DOWN keys.
6. Push the SET key, to confirm and pass to the setting of time.
7. Use the same procedure for the date.
8. Then confirm the selection by means of the SET key.

NOTE: to memorise the alarms and to enable the automatic energy saving cycle the real time clock has to be set.

5. Alarms

The controller memorises the last 100 alarms happened, together with their start and finish time. To see the alarms follow the following procedure.

5.1 Menu Active alarms

Push the ALARM key to enter the alarm menu.

1. Push the ALARM key to enter the ALARM MENU,
2. Select the alarm menu

Premere il tasto ENTER per entrare nel menu allarmi
(1)
(2)

The alarm menu displays the active alarm with the following layout:
(1) = alarm code
(2) = alarm description

Push the LOG button to enter the ALARM ACTIVE log, as shown in the following picture

5.2 Active alarm log menu

This menu contains all the information concerning the active alarms. In the first line, it is displayed how many alarms are happening.

It's possible to move through the alarms by the UP and DOWN keys.

5.3 Active alarm log menu

Push the LOG button to enter the ALARM LOG.

This menu contains all the memorised alarms. For each alarm the starting time and date and the finish time and date are recorded.

Push the ERASE button to delete the whole archive of alarms.
The following display is shown:

Push the CONFIRM button to confirm the operation and delete the archive. Push the CANCEL button to cancel the operation and come back to the ALARM LOG menu.

6. Parameters

6.1.1 Compressor Rack setup (C0-C18, C34-C36)

C0 Kind of plant: it set the kind of plant.
The following table shows the kind of plant can be set and which probes have to be used

C0	Kind of plant	Pb1	Pb2	Pb3	Pb4
0A1d	Only condenser fan			Delivery 1	
1A0d	Only compressors				

C1... C15 Relay 1... 15 configuration: by means of parameter C0 and C1...C15 the plant can be dimensioned according to the number and type of compressors and/or fans and the number of steps for each one.
Each relay according to the configuration of the C(i) parameter can work as
Frq1 = frequency compressor circuit 1;
Frq2 $=$ frequency compressor circuit 2;
CPr1 = compressor circuit 1;
CPr2 $=$ compressor circuit 2 ,
Screw1 = screw compressor - circuit 1
Screw2 = screw compressor - circuit 2
StP = step of the previous compressor,
FrqF1 = inverter fan circuit 1;
FrqF2 = inverter fan circuit 2;
FAn1 = fan circuit 1,
FAn2 $==$ fan circuit 2 ,
ALr = alarm;
ALr1 = alarm 1
ALr2 = alarm 2
AUS1 = auxiliary output 1
AUS2 = auxiliary output 2,
AUS3 = auxiliary output 3 ,
AUS4 = auxiliary output 4,
onF = on / off relay
nu $=$ relay not used
NOTE 1: CIRCUITS WITH INVERTER FOR COMPRESSORS OR FANS
If in one circuit there are frequency compressors (Frq1 or Frq2) inverter fans, (Frq1F or Frq2F) their relays must be the first of that circuit.
ES: Plant with 1 circuit with 6 compressors (1 with inverter and 5 fans with inverter):
$C 0=1 \mathrm{~A} 1 \mathrm{~d} ;$
C1 = Frq1;
C2 $=$ CPr1;
C3 $=$ CPr1,
C4 = CPr1,
C5 = CPr1;
C6 = CPr1;
$\mathbf{C 7}=\mathrm{Frq} 1 \mathrm{~F}$;

C8 = FAn1;
C9 = FAn1;
C10 $=$ FAn1;
C11 $=$ FAn1;
$\mathrm{C} 12=\mathrm{nu}$
C13 = nu
C14 = nu
$\mathrm{C} 15=\mathrm{nu}$
PLANT CONFIGURATION EXAMPLE:
Plant with 1 circuit with 6 compressors e 5 fans:
$C 0=1 \mathrm{~A} 1 \mathrm{~d}$;
$\mathrm{C} 1=\mathrm{CPr}$;
C2 $=\mathrm{CPr}$;
C3 = CPr1,
C4 = CPr1,
C5 = CPr1;
C6 = CPr1;
C7 = FAn1;
C8 = FAn1;
C9 = FAn1;
C10 $=$ FAn1;
C11 $=$ FAn1;
C12 $=$ nu
C13 $=$ nu
C14 = nu
C15 = nu
Plant with 1 circuit with 3 compressors, 2 of them without valves, and 1 compressor with 2 valves e 4 fans:
$C 0=1 \mathrm{~A} 1 \mathrm{~d}$;
C1 = CPr1;
C2 $=\mathrm{CPr} 1$;
C3 $=$ CPr1,
C4 = Stp,
C5 = Stp;
C6 = FAn1;
C7 = FAn1;
C8 = FAn1;
C9 = FAn1;
$\mathrm{C} 10=\mathrm{nu}$
C11 $=\mathrm{nu}$
C12 $=\mathrm{nu}$
C13 = nu
C14 $=$ nu
C15 = nu
Plant with 2 suctions and 2 deliveries:
Suction 1: 1frequency compressor, 1 compressor without valves and 1 compressors with 2 valves
Delivery 1: 3 fans
Suction 2: 1 frequency compressor, 2 compressors
Delivery 2: 1 inverter fan, 2 fans
CO = 2A2d;

> C1 = Frq1;
> C2 = CPr1;
> C3 = CPr1,
> C4 = Stp,
> C5 = Fan1;
> C6 = FAn1;
> C7 = FAn1;
> C8 = Frq2;
> C9 = Cpr2;
> C10 = Cpr2;
> C11 = Frq2F;
> C12 = Fan2;
> C13 = Fan2;
> C14 = nu
> C15 = nu
> C16 Kind of compressors: to set the kind of compressors.
> SPo = compressors with the same capacity.
> BtZ = screw compressors like Bitzer, Hanbell, Refcomp etc operation.
> Frtz = screw compressors like Frascold operation.
> C17 Valve output polarity - circuit 1: valve polarity: polarity of the outputs for capacity valves. It determines the state of the relays associated with the capacity valves:
> oP=valve enabled with open contact;
> $\mathrm{cL}=$ valve enabled with closed contact.
> C18 Valve output polarity - circuit 2: valve polarity: polarity of the outputs for capacity valves. It determines the state of the relays associated with the capacity valves:
> oP=valve enabled with open contact;
> cL= valve enabled with closed contact.
> C34 Kind of gas: set the kind of freon used in the plant
> r22 = R22; r404= R404A ; 507= R507; 134=134; r717=r717 (ammonia); co2 = CO2; 410 = r410.
> Setting the kind of gas, the XC1000D can associate the pressure with the matching temperature.
> C35 Activation time during the switching on of first step (valve of 25%) for Bitzer screw compressors: $(0 \div 255 \mathrm{~s})$: it sets for how long the valve is used during the startup phase.
> C36 First step enabled during the regulation (switching off phase): it sets if the first step can be used also during normal regulation.
> $\mathrm{NO}=$ first step used only during the start phase
> YES = first step used also during normal regulation

6.1.2 Regulation (C37-C44)

C37 Type of regulation for compressor circuit 1:db = neutral zone, $\quad \mathrm{Pb}=$ proportional band.
C38 Type of regulation for compressor circuit 2: $\mathrm{db}=$ neutral zone, $\quad \mathrm{Pb}=$ proportional band.
C41 Compressor rotation circuit 1:
YES = rotation: the algorithm distributes the working time between loads to ensure even run times.
no $=$ fixed sequence: the compressors are enabled and disabled in fixed sequence: first, second etc.
C42 Compressor rotation circuit 2:
YES = rotation: the algorithm distributes the working time between loads to ensure even run times.
no $=$ fixed sequence: the compressors are enabled and disabled in fixed sequence: first, second etc.
C43 Fan rotation circuit 1:
YES = rotation: the algorithm distributes the working time between loads to ensure even run times.
no $=$ fixed sequence: the fans are enabled and disabled in fixed sequence: first, second etc.
C44 Fan rotation circuit 2:
YES = rotation: the algorithm distributes the working time between loads to ensure even run times. no $=$ fixed sequence: the fans are enabled and disabled in fixed sequence: first, second etc.

6.1.3 Display (C45-C46)

C45 Displaying measurement unit: it sets the measurement unit used for the display and for parameters that are connected to temperature/pressure. In pharentesis other measurement unit. CDEC: ${ }^{\circ} \mathrm{C}$ with decimal point (bar);

CINT: ${ }^{\circ} \mathrm{C}$ with decimal point (bar);
F: ${ }^{\circ} \mathrm{F}$ (PSI);
BAR: bar ($\left.{ }^{\circ} \mathrm{C}\right)$;
PSI: PSI ($\left.{ }^{\circ} \mathrm{F}\right)$;
KPA: KPA $\left({ }^{\circ} \mathrm{C}\right)$
CKPA: ${ }^{\circ} \mathrm{C}$ (KPA)
NOTE1: changing the measurement unit, the instrument will update parameter values that refer to pressure or temperature.
NOTE2: parameters with probe calibration, are reset during the measurement unit change.
C46 Pressure display: it indicates if the range of the probes are related to relative or absolute pressure. rEL = relative pressure; AbS: absolute pressure
NOTE: the temperature is updated changing this value.

6.1.4 Analog Inputs (Ail-Ail5)

Al1 Kind of probe of P1 \& P2: it sets the kind of probes for suction sections: Cur $=4 \div 20 \mathrm{~mA}$ probe; Ptc $=$ Ptc probe; $\boldsymbol{n t c}=$ NTC probe; $\mathbf{r A t}=$ rathiometric probe $(0 \div 5 \mathrm{~V})$.
Al2 Adjustment of read out for the probe 1 at $4 \mathrm{~mA} / \mathbf{O V}:(-1.00 \div \mathrm{Al} 3$ bar; $-15 \div \mathrm{Al} 3 \mathrm{PSI},-100 \div \mathrm{Al} 3$ KPA) ${ }^{\prime}$
Al3 Adjustment of read out for the probe 1 at 20mA/5V: (Al2 $\div 100.00$ bar; $\mathrm{Al} 2 \div 750 \mathrm{PSI} ; \mathrm{Al} 2 \div$ 10000 KPA)
Al4 Probe 1 calibration:
with C45 = CDEC or CINT: $-12.0 \div 12.0^{\circ} \mathrm{C}$
with C45= bar: $-1.20 \div 1.20$ bar;
with C45 = F or PSI: $-120 \div 120^{\circ} \mathrm{F}$ o PSI
with C45 $=$ KPA: $-1200 \div 1200$ KPA;
Al5 Adjustment of read out for the probe 2 at $4 \mathrm{~mA} / \mathbf{O V}:(-1.00 \div \mathrm{Al} 6 \mathrm{bar} ;-15 \div \mathrm{Al} 6 \mathrm{PSI})$
Al6 Adjustment of read out for the probe 2 at $20 \mathrm{~mA} / 5 \mathrm{~V}$: (AI5 $\div 51.00$ bar; $\mathrm{Al} 5 \div 750 \mathrm{PSI}$)
Al7 Probe 2 calibration:
with C43 = CEL_DEC or CEL_INT: $-12.0 \div 12.0^{\circ} \mathrm{C}$
with C43 = bar: $-1.20 \div 1.20$ bar;
with C43 $=$ FAR or PSI: $-120 \div 120^{\circ} \mathrm{F}$ or PSI
Al8 Kind of probe of P3 \& P4: : it sets the kind of probes for delivery sections: Cur $=4 \div 20 \mathrm{~mA}$ probe; Ptc $=$ Ptc probe; $\boldsymbol{n t c}=$ NTC probe; $\mathbf{r A t}=$ rathiometric probe $(0 \div 5 \mathrm{~V})$.
Al9 Adjustment of read out for the probe 3 at $4 \mathrm{~mA} / 0 \mathrm{~V}:(-1.00 \div \mathrm{Al10bar} ;-15 \div \mathrm{Al} 10 \mathrm{PSI} ;-100 \div \mathrm{Al} 10$ KPA)
Al10 Adjustment of read out for the probe 3 at 20 mA 5 V : (AI9 $\div 100.00$ bar; Al9 $\div 750 \mathrm{PSI}$; Al9 \div 10000 KPA)
Al11 Probe 3 calibration
with C45 = CDEC or CINT: $-12.0 \div 12.0^{\circ} \mathrm{C}$
with $\mathbf{C 4 5}=$ bar: $-1.20 \div 1.20$ bar;
with C45 $=$ F or PSI: $-120 \div 120^{\circ} \mathrm{F}$ o PSI
with C45 = KPA: $-1200 \div 1200$ KPA;
Al12 Adjustment of read out for the probe 4 at 4mA/0V: $(-1.00 \div$ Al13bar; $-15 \div \mathrm{Al} 13 \mathrm{PSI} ;-100 \div \mathrm{Al} 13$ KPA)
Al13 Adjustment of read out for the probe 4 at $20 \mathrm{~mA} / 5 \mathrm{~V}:(\mathrm{Al} 12 \div 100.00 \mathrm{bar} ; \mathrm{Al} 12 \div 750 \mathrm{PSI} ; \mathrm{Al} 12 \div$ 10000 KPA)
Al14 Probe 4 calibration:
with C45 = CDEC or CINT: $-12.0 \div 12.0^{\circ} \mathrm{C}$
with C45 = bar: $-1.20 \div 1.20$ bar;
with C45 $=$ F or PSI: $-120 \div 120^{\circ} \mathrm{F}$ o PSI
with C45 $=$ KPA: $-1200 \div 1200$ KPA;
Al15 Alarm activated in case of regulation faulty probe:
nu = none relay; Alr: all the C(i) outputs set as ALr; ALr1: all the C(i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2

6.1.5 Auxiliary analog inputs (Ail-Ail5)

Al16 Probe 1 AUX setting: ptc = PTC probe; ntc = NTC probe
Al17 Probe 1 AUX action type: it sets the function ot the AUX1 probe (term. 70-71)
nu = not used
Au1 = thermostat probe for AUX1 relay;
Au2 $=$ thermostat probe for AUX2 relay;
Au3 = thermostat probe for AUX3 relay;
Au4 = thermostat probe for AUX4 relay;
otC1 = for the optimization of the delivery pressure/temperature, circuit 1 (dynamic set of delivery circuit 1);
otC2 = for the optimization of the delivery pressure/temperature, circuit 2 (dynamic set of delivery circuit 2);
otA1 = for the optimization of the suction pressure/temperature, (dynamic set point) circuit 1 (dynamic set of suction circuit 1);
otA2 $=$ for the optimization of the suction pressure/temperature, (dynamic set point) circuit 2 (dynamic set of suction circuit 2)

Probe 1 AUX calibration: $-12.0 \div 12.0^{\circ} \mathrm{C} ;-120 \div 120^{\circ} \mathrm{F}$
Probe 2 AUX setting: ptc = PTC probe; ntc= NTC probe
Probe 2 AUX action type: it sets the function ot the AUX1 probe (term. 71-72)
nu = not used
Au1 = thermostat probe for AUX1 relay;
Au2 $=$ thermostat probe for AUX2 relay;
Au3 $=$ thermostat probe for AUX3 relay;
Au4 = thermostat probe for AUX4 relay;
otC1 = for the optimization of the delivery pressure/temperature, circuit 1 (dynamic set of delivery circuit 1);
otC2 = for the optimization of the delivery pressure/temperature, circuit 2 (dynamic set of delivery circuit 2);
otA1 = for the optimization of the suction pressure/temperature, (dynamic set point) circuit 1 (dynamic set of suction circuit 1);
otA2 $=$ for the optimization of the suction pressure/temperature, (dynamic set point) circuit 2 (dynamic set of suction circuit 2)
Probe 2 AUX calibration: $-12.0 \div 12.0^{\circ} \mathrm{C} ;-120 \div 120^{\circ} \mathrm{F}$
Probe 3 AUX setting: ptc = PTC probe; ntc= NTC probe
Probe 3 AUX action type: it sets the function ot the AUX1 probe (term. 73-74)
nu = not used
Au1 = thermostat probe for AUX1 relay;
Au2 $=$ thermostat probe for AUX2 relay;
Au3 $=$ thermostat probe for AUX3 relay;
Au4 = thermostat probe for AUX4 relay;
otC1 = for the optimization of the delivery pressure/temperature, circuit 1 (dynamic set of delivery circuit 1);
otC2 $=$ for the optimization of the delivery pressure/temperature, circuit 2 (dynamic set of delivery circuit 2);
otA1 = for the optimization of the suction pressure/temperature, (dynamic set point) circuit 1 (dynamic set of suction circuit 1);
otA2 $=$ for the optimization of the suction pressure/temperature, (dynamic set point) circuit 2 (dynamic set of suction circuit 2)
Probe 3 AUX calibration: $-12.0 \div 12.0^{\circ} \mathrm{C} ;-120 \div 120^{\circ} \mathrm{F}$
Probe 4 AUX setting: \quad ptc $=$ PTC probe; ntc $=$ NTC probe
Probe 4 AUX action type: it sets the function ot the AUX1 probe (term. 74-75)
nu = not used
Au1 = thermostat probe for AUX1 relay;
Au2 = thermostat probe for AUX2 relay;
Au3 $=$ thermostat probe for AUX3 relay;
Au4 = thermostat probe for AUX4 relay;
otC1 = for the optimization of the delivery pressure/temperature, circuit 1 (dynamic set of delivery circuit 1);
otC2 = for the optimization of the delivery pressure/temperature, circuit 2 (dynamic set of delivery circuit 2);
otA1 = for the optimization of the suction pressure/temperature, (dynamic set point) circuit 1 (dynamic set of suction circuit 1);
otA2 $=$ for the optimization of the suction pressure/temperature, (dynamic set point) circuit 2 (dynamic set of suction circuit 2)
Probe 4 AUX calibration: $-12.0 \div 12.0^{\circ} \mathrm{C} ;-120 \div 120^{\circ} \mathrm{F}$
Al28 Alarm relay on with auxiliary probe fault:
nu = relay not present; ALr: all the C(i) outputs set as ALr; ALr1: all C(i) outputs set as ALr1, ALr2: all C(i) outputs set as ALr2.

6.1.6 Safety Digital Inputs (Di2-Di13)

DI2 Low pressure switch polarity (term. 52-53) - circuit 1: oP=LP d.i. enabled by voltage absence; cL= LP d.i. enabled by voltage presence.
DI3 Low pressure switch polarity (term. 56-57) - circuit 2:
oP=LP d.i. enabled by voltage absence; cL= LP d.i. enabled by voltage presence.
DI4 High pressure switch polarity (term. 54-55) - circuit 1: oP=HP d.i. enabled by voltage absence; cL= HP d.i. enabled by voltage presence.
DI5 High pressure switch polarity (term. 58-59) - circuit 2:
oP=HP d.i. enabled by voltage absence; cL= HP d.i. enabled by voltage presence.
DI6 Relay activated in case of pressure switch alarm: nu = no relay activation, only visual signalling; Alr: all the $\mathrm{C}(\mathrm{i})$ outputs set as ALr; ALr1: all the C (i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2
DI7 Compressor alarm inputs polarity - circuit 1
oP= d.i. enabled by voltage absence; $c L=d . i$. enabled by voltage presence.
DI8 Compressor alarm inputs polarity - circuit 2
oP= d.i. enabled by voltage absence;
$c L=$ d.i. enabled by voltage presence.
DI9 Fan alarm inputs polarity - circuit 1
$o P=$ d.i. enabled by voltage absence;
$\mathrm{cL}=$ d.i. enabled by voltage presence.
DI10 Fan alarm inputs polarity - circuit 2
$o P=$ d.i. enabled by voltage absence; $c L=$ d.i. enabled by voltage presence.
DI11 Manual reset of compressor alarms signalled by d.i.
no = automatic recover of alarm: regulation restart when the correspondent digital input is disabled $\mathbf{y E S}=$ manual recover for the alarms of compressors
DI12 Manual reset of fan alarms signalled by d.i.
no = automatic recover of alarm: a fan restarts when the correspondent digital input is disabled $\mathbf{y E S}=$ manual recover for the alarms of fan
Dl13 Relay activated in case of compressor or fan alarms:
nu = no relay activation, only visual signalling; Alr: all the $\mathrm{C}(\mathrm{i})$ outputs set as ALr; ALr1: all the C(i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2

6.1.7 Digital Inputs (Di14-Di27)

Dl14 Polarity of configurable digital input 1 (term 36-37)
oP: the digital input is activated by opening the contact;
CL: the digital input is activated by closing the contact.
Dl15 Function of configur. configurable digital input 1 (term. 36-37)
ES1 = energy saving circuit 1
ES2 $=$ energy saving circuit 2
OFF1 = circuit 1 stand -by
OFF2 $=$ circuit 2 stand -by
LL1 $=$ liquid level alarm for circuit 1
LL2 = liquid level alarm for circuit 2

	noCRO = it disables the set point coming from the supervising system, and it restores SETC1 and SETC2 set. noSTD1 $=$ it disables the dynamic set point on the circuit 1, and it restores SETC1 and SETF1 set. noSTD2 $=$ it disables the dynamic set point on the circuit 2, and it restores SETC2 and SETF2 set.
D116	Delay of configurable d.i. $1 \quad(0 \div 255 \mathrm{~min})$
D117	Polarity of configurable digital input 2 (term 38-39)
	$\mathbf{O P}$: the digital input is activated by opening the contact;
	CL: the digital input is activated by closing the contact.
DI18	Function of configur. configurable digital input 2 (term. 38-39)
	ES1 = energy saving circuit 1
	ES2 $=$ energy saving circuit 2
	OFF1 = circuit 1 stand -by
	OFF2 $=$ circuit 2 stand -by
	LL1 $=$ liquid level alarm for circuit 1
	LL2 = liquid level alarm for circuit 2
	noCRO = it disables the set point coming from the supervising system, and it restores SETC1 and SETC2 set.
	noSTD1 $=$ it disables the dynamic set point on the circuit 1, and it restores SETC1 and SETF1 set.
D19	Delay of configurable d.i. $2 \quad(0 \div 255 \mathrm{~min})$
DI20	Polarity of configurable digital input 3 (term 40-41)
	oP: the digital input is activated by opening the contact;
	CL: the digital input is activated by closing the contact.
DI21	Function of configur. configurable digital input 3 (term. 40-41)
	ES1 = energy saving circuit 1
	ES2 $=$ energy saving circuit 2
	OFF1 = circuit 1 stand -by
	OFF2 $=$ circuit 2 stand -by
	LL1 $=$ liquid level alarm for circuit 1
	LL2 $=$ liquid level alarm for circuit 2
	noCRO = it disables the set point coming from the supervising system, and it restores SETC1 and SETC2 set.
	noSTD1 $=$ it disables the dynamic set point on the circuit 1, and it restores SETC1 and SETF1 set.
	noSTD2 $=$ it disables the dynamic set point on the circuit 2, and it restores SETC2 and SETF2 set.
DI22	Delay of configurable d.i. $3 \quad(0 \div 255 \mathrm{~min})$
DI23	Polarity of configurable digital input 4 (term. 42-43)
	OP: the digital input is activated by opening the contact;
	CL: the digital input is activated by closing the contact.
DI24	Function of configur. configurable digital input 4 (term. 42-43)
	ES1 = energy saving circuit 1
	ES2 $=$ energy saving circuit 2
	OFF1 = circuit 1 stand -by
	OFF2 $=$ circuit 2 stand -by
	LL1 = liquid level alarm for circuit 1
	LL2 = liquid level alarm for circuit 2
	noCRO = it disables the set point coming from the supervising system, and it restores SETC1 and SETC2 set.
	noSTD1 $=$ it disables the dynamic set point on the circuit 1, and it restores SETC1 and SETF1 set. noSTD2 $=$ it disables the dynamic set point on the circuit 2 , and it restores SETC2 and SETF2 set.
DI25	Delay of configurable d.i. $4 \quad(0 \div 255 \mathrm{~min})$
DI26	Relay activated in case of liquid level alarm - circuit 1 nu = no relay activation, only visual signalling; Alr: all the C(i) outputs set as ALr; ALr1: all the C(i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2
DI27	Relay activated in case of liquid level alarm - circuit 2 nu = no relay activation, only visual signalling; Alr: all the C(i) outputs set as ALr; ALr1: all the C(i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2

6.1.8 Compressor Action (CP1-CP8)

CP1 Regulation band width for compressors- circuit 1 ($0.10 \div 10.00$ bar; $0.1 \div 25.0^{\circ} \mathrm{C}, 1 \div 80 \mathrm{PSI}$, $1 \div 50^{\circ} \mathrm{F} ; 10 \div 1000 \mathrm{KPA}$) The band is symmetrical compared to the target set point, with extremes: SETC1+(CP1)/2 ... SETC1-(CP1)/2. The measurement unit depends on the C45 par.
NOTE: If the circuit 1 has 1 relay set as a frequency compressor (Frq1), the 1Q19 parameter is used instead of the CP1 parameter: regulation band width that is added to the set point 1.
CP2 Minimum compressor set point - circuit 1 (Al2 \div SETC1 bar, PSI or KPA; -50.0 $\div \mathrm{SETC1}^{\circ} \mathrm{C}$; -58.0 $\div \operatorname{SETC} 1{ }^{\circ} \mathrm{F}$). The measurement unit depends on C45 parameter. It sets the minimum value that can be used for the compressor set point, to prevent the end user from setting incorrect values.
CP3 Maximum compressor set point - circuit 1 (SETC1 $\div \mathrm{Al} 3$ bar/PSI/KPA; SETC $1 \div 150.0^{\circ} \mathrm{C}$; SETC $1 \div 302^{\circ} \mathrm{F}$)
The measurement unit depends on C45 parameter. It sets the maximum acceptable value for compressor set point.
CP4 Compressor energy saving value - circuit $1\left(-20.00 \div 20.00 \mathrm{bar} ;-50.0 \div 50.0^{\circ} \mathrm{C}\right.$; $-300 \div 300 \mathrm{PSI}$; $90 \div 90^{\circ} \mathrm{F} ;-2000 \div 2000 \mathrm{KPA}$) this value is add to the compressor set point when the energy saving is enabled.
CP5 Regulation band width for compressors - circuit $2\left(0.10 \div 10.00\right.$ bar; $0.1 \div 25.0^{\circ} \mathrm{C}, 1 \div 80 \mathrm{PSI}$, $1 \div 50^{\circ} \mathrm{F} ; 10 \div 1000 \mathrm{KPA}$). The band is symmetrical compared to the target set point, with extremes: SETC2+(CP5)/2 ... SETC2-(CP1)2. The measurement unit depends on the C43 par.
NOTE: If the circuit 1 has 1 relay set as a frequency compressor (Frq2), the 2Q18 parameter is used instead of the CP5 parameter: regulation band width that is added to the set point 2.
CP6 Minimum compressor set point - circuit 2 (AI5 \div SETC2 bar or PSI o KPA; - $50.0 \div$ SETC2 ${ }^{\circ} \mathrm{C}$; $58.0 \div$ SETC $2{ }^{\circ} \mathrm{F}$). The measurement unit depends on C 45 parameter. It sets the minimum value that can be used for the compressor set point, to prevent the end user from setting incorrect values.
CP7 Maximum compressor set point - circuit 2 (SETC2 $\div \mathrm{Al6}$ bar/PSI/KPA; SETC2 $\div 150.0^{\circ} \mathrm{C}$; SETC2 $\div 302^{\circ} \mathrm{F}$)
The measurement unit depends on C45 parameter. It sets the maximum acceptable value for compressor set point.
CP8 Compressor energy saving value - circuit $2\left(-20.00 \div 20.00 \mathrm{bar} ;-50.0 \div 50.0{ }^{\circ} \mathrm{C}\right.$; $-300 \div 300 \mathrm{PSI} ;-$ $90 \div 90^{\circ} \mathrm{F}$) this value is add to the compressor set point when the energy saving is enabled.

6.1.9 Safety Compressors (CP9-CP19)

CP9 Minimum time between 2 following switching ON of the same compressor ($0 \div 255 \mathrm{~min}$).
CP10 Minimum time between the switching off of a compressor and the following switching on. ($0 \div 255 \mathrm{~min}$).
Note: usually CP9 is greater than CP10
CP11 Time delay between the insertion of two different compressors ($0 \div 99.5 \mathrm{~min}$; res. 1sec)
CP12 Time delay between switching off of two different compressors ($0 \div 99.5 \mathrm{~min}$; res. 1sec)
CP13 Minimum time load on ($0 \div 99.5 \mathrm{~min}$; res. 1 sec)
CP14 Maximum time load on ($0 \div 24 \mathrm{~h}$; with 0 this function is disabled.) If a compressor keeps staying on for the CP14 time, it's switched off and it can restart after the CP10 standard time or after the CP15 time with frequency compressor (Frq1 or Frq2).
CP15 Minimum time a frequency compressor (CP1..CP15 =Frq1 or Frq2) stays off after CP14 time ($0 \div 255 \mathrm{~min}$)
CP16 CP11 delay enabled also for the first call. If enabled, the triggering of the step is delayed for a "CP11" time, respect to the call.
no = "CP11" not enabled;
yES="CP11" enabled
CP17 CP12 delay enabled also for the first off. If enabled, the triggering of the step is delayed for a "CP12" time, respect to the call.
no = "CP12" not enabled;
yES="CP12" enabled
CP18 Output delay at power on $(0 \div 255 \mathrm{sec})$
CP19 Booster function enabled:
no $=$ compressors of 2 circuits work independently
$\mathrm{yES}=$ if at least one compressor of the circuit 1 (BT) is ON , also one compressor of the circuit 2 (TN) is enabled, independently from the pressure of the circuit 2 . This ensures that the gas coming from the circuit 1 is suct by the compressors of the circuit 2 .

6.1.10 Fan Action (F1-F8)

F1 Regulation band width for fans - circuit $1 \quad\left(0.10 \div 10.00\right.$ bar; $0.1 \div 30.0^{\circ} \mathrm{C}, 1 \div 80 \mathrm{PSI}, 1 \div 50^{\circ} \mathrm{F}$; $10 \div 1000 \mathrm{KPA})$ Set the C45 par. and the target set point for fans before setting this parameter. The band is symmetrical compared to the fan target set point, with extremes: SETF1-(F1)/2 ... SETF1+(F1)/2. The measurement unit depends on the C45 par.
F2 Minimum fan set point - circuit 1 BAR: 2 (AI9 \div SETF1 bar or PSI o KPA; -50.0 \div SETF1 ${ }^{\circ} \mathrm{C}$; $58.0 \div$ SETF1 ${ }^{\circ} \mathrm{F}$). The measurement unit depends on C 45 parameter. It sets the minimum value that can be used for the fan set point, to prevent the end user from setting incorrect values.
F3 Maximum fan set point - circuit 1 (SETF $1 \div \mathrm{Al} 10 \mathrm{bar} / \mathrm{PSI} / \mathrm{KPA}$; SETF $1 \div 150.0^{\circ} \mathrm{C}$; SETF $1 \div 302^{\circ} \mathrm{F}$) The measurement unit depends on C45 parameter. It sets the maximum acceptable value for fan set point.
F4 Fan energy saving value - circuit $1\left(-20.00 \div 20.00 \mathrm{bar} ;-50.0 \div 50.0^{\circ} \mathrm{C} ;-300 \div 300 \mathrm{PSI} ;-90 \div 90^{\circ} \mathrm{F}\right.$; $2000 \div 2000 \mathrm{KPA}$) this value is add to the fan set point when the energy saving is enabled.
F5 Regulation band width for fans - circuit $2\left(0.10 \div 10.00\right.$ bar; $0.1 \div 30.0^{\circ} \mathrm{C}, 1 \div 80 \mathrm{PSI}, 1 \div 50^{\circ} \mathrm{F}$; $10 \div 1000 \mathrm{KPA}$)
Set the C45 par. and the target set point for fans before setting this parameter.
The band is symmetrical compared to the fan target set point, with extremes: SETF2-(F5)/2 ... SETF2+(F5)/2. The measurement unit depends on the C45 par.
F6 Minimum fan set point - circuit 2 BAR: 2 (Al12 \div SETF2 bar or PSI o KPA; - $50.0 \div$ SETF2 ${ }^{\circ} \mathrm{C}$; $58.0 \div$ SETF2 ${ }^{\circ} \mathrm{F}$). The measurement unit depends on C 45 parameter. It sets the minimum value that can be used for the fan set point, to prevent the end user from setting incorrect values.
F7 Maximum fan set point - circuit 2 (SETF2 $\div \mathrm{Al} 13$ bar/PSI/KPA; SETF $2 \div 150.0^{\circ} \mathrm{C}$; SETF $2 \div 302^{\circ} \mathrm{F}$) The measurement unit depends on C45 parameter. It sets the maximum acceptable value for fan set point.
F8 Fan energy saving value - circuit $2\left(-20.00 \div 20.00 \mathrm{bar} ;-50.0 \div 50.0^{\circ} \mathrm{C}\right.$; $-300 \div 300 \mathrm{PSI} ;-90 \div 90^{\circ} \mathrm{F}$; $2000 \div 2000 \mathrm{KPA}$) this value is add to the fan set point when the energy saving is enabled.

6.1.11 Safety Fans (F9-F10)

F9 Time delay between the insertion of two different fans ($1 \div 255 \mathrm{sec}$)
F10 Time delay between switching off of two different fans ($1 \div 255 \mathrm{sec}$)

6.1.12 Energy Saving Management (HS1-HS14)

HS1 Energy Saving start time on Monday ($0: 0 \div 23.5 \mathrm{~h}$; nu)
HS2 Monday Energy Saving duration (0:0 $\div 23.5 \mathrm{~h}$)
HS3 Energy Saving start time on Tuesday ($0: 0 \div 23.5 \mathrm{~h}$; nu)
HS4 Tuesday Energy Saving duration ($0: 0 \div 23.5 \mathrm{~h}$)
HS5 Energy Saving start time on Wednesday ($0: 0 \div 23.5 \mathrm{~h}$; nu)
HS6 Wednesday Energy Saving duration (0:0 $\div 23.5 \mathrm{~h}$)
HS7 Energy Saving start time on Thursday ($0: 0 \div 23.5 \mathrm{~h}$; nu)
HS8 Thursday Energy Saving duration (0:0 $\div 23.5 \mathrm{~h}$)
HS9 Energy Saving start time on Friday ($0: 0 \div 23.5 \mathrm{~h} ; \mathrm{nu}$)
HS10 Friday Energy Saving duration (0:0 $\div 23.5 \mathrm{~h}$)
HS11 Energy Saving start time on Saturday (0:0 $\div 23.5 \mathrm{~h}$; nu)
HS12 Saturday Energy Saving duration (0:0 $\div 23.5 \mathrm{~h}$)
HS13 Energy Saving start time on Sunday ($0: 0 \div 23.5 \mathrm{~h}$; nu)
HS14 Sunday Energy Saving duration (0:0 $\div 23.5 \mathrm{~h}$)

6.1.13 Compressor Alarms (AC1-AC19)

AC1 Probe 1 alarm exclusion at power on $(0 \div 255 \mathrm{~min})$ it is the period starting from instrument switch on, before an alarm probe is signalled. During this time if the pressure is out of range all the compressor are switched on.
AC2 Probe 2 alarm exclusion at power on $(0 \div 255 \mathrm{~min})$ it is the period starting from instrument switch on, before an alarm probe is signalled. During this time if the pressure is out of range all the compressor are switched on.

AC3 Low pressure (temperature) alarm for compressors - circuit 1: ($0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C}$; $1 \div 430 \mathrm{PSI} ; 1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)
The measurement unit depends on C45 parameter. AC3 is always subtracted to the set point SETC1. When the value SETC1-AC3 is reached the "Low alarm - Suction 1" is enabled, (possibly after the AC5 delay time)
AC4 High pressure (temperature) alarm for compressors - circuit 1: $\left(0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C}\right.$; $1 \div 430 \mathrm{PSI} ; 1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)
The measurement unit depends on C45 parameter. AC4 is always added to the set point SETC1. When the value SETC1+AC4 is reached the "High alarm - Suction 1" is enabled, (possibly after the AC5 delay time)
AC5 Low and High compressor pressure (temperature) alarms delay - circuit 1 ($0 \div 255 \mathrm{~min}$) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.
AC6 Low pressure (temperature) alarm for compressors - circuit 2: ($0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C}$; $1 \div 430 \mathrm{PSI} ; 1 \div 200.0^{\circ} \mathrm{F}$)
The measurement unit depends on C43 parameter. AC6 is always subtracted to the set point SETC2. When the value SETC2-AC6 is reached the "Low alarm - Suction 2" is enabled, (possibly after the AC8 delay time)
AC7 High pressure (temperature) alarm for compressors - circuit 2: $\left(0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C}\right.$; $1 \div 430 \mathrm{PSI} ; 1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)
The measurement unit depends on C45 parameter. AC7 is always added to the set point SETC2. When the value SETC2+AC7 is reached the "High alarm - Suction 1" is enabled, (possibly after the AC8 delay time)
AC8 Low and High compressor pressure (temperature) alarms delay - circuit 2 ($0 \div 255 \mathrm{~min}$) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.
AC9 Relay activated in case of pressure (temperature) alarm
nu = no relay activation, only visual signalling; Alr: all the $\mathrm{C}(\mathrm{i})$ outputs set as ALr; ALr1: all the C(i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2
AC10 Service request: ($0 \div 25000 \mathrm{~h}$ with 0 the function is disabled) number of running hours after that maintenance warning is generated
AC11 Relay activated in case of service request alarm
nu = no relay activation, only visual signalling; Alr: all the $\mathrm{C}(\mathrm{i})$ outputs set as ALr; ALr1: all the C (i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2
AC12 Low pressure-switch intervention numbers - circuit 1: ($0 \div 15$). Every time the pressure-switch is activated all the compressors of the circuit 1 are turned off. If the low pressure-switch is activated AC12 times in the AC13 interval, the compressors of the first circuit are switched off and only the manually unlocking is possible.
AC13 Pressure-switch interventions time ($0 \div \mathbf{2 5 5} \mathbf{~ m i n}$) - circuit 1 Interval, linked to the AC12 parameter, for counting interventions of the low pressure-switch.
AC14 Number of steps engaged with suction probe 1 faulty $(0 \div 15)$
AC15 Not used
AC16 Low pressure-switch intervention numbers - circuit 2: ($0 \div 15$). Every time the pressure-switch is activated all the compressors of the circuit 2 are turned off. If the low pressure-switch is activated AC16 times in the AC17 interval, the compressors of the second circuit are switched off and only the manually unlocking is possible.
AC17 Pressure-switch interventions time ($0 \div \mathbf{2 5 5} \mathbf{~ m i n}$) - circuit 2 Interval, linked to the AC16 parameter, for counting interventions of the low pressure-switch.
AC18 Number of steps engaged with suction probe 2 faulty $(0 \div 15)$
AC19 Not used

6.1.14 Fan Alarms (AF1-AF17)

AF1 Low pressure (temperature) alarm for fans - circuit $1:\left(0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C} ; 1 \div 430\right.$ PSI; $1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)
The measurement unit depends on C45 parameter. AF1 is always subtracted to the set point SETF1. When the value SETF1-AF1 is reached the "Low alarm - Condenser 1 " is enabled, (possibly after the AF3 delay time)
AF2 High pressure (temperature) alarm for fans- circuit 1: $\left(0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C} ; 1 \div 430\right.$ PSI; $1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)

The measurement unit depends on C45 parameter. AF2 is always added to the set point SETF1. When the value SETF1+AF2 is reached the "High alarm - Condenser 1" is enabled, (possibly after the AF3 delay time)
AF3 Low and High fan pressure (temperature) alarms delay - circuit 1 ($0 \div 255 \mathrm{~min}$) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.
AF4 Compressors off with pressure (temperature) alarm for fans- circuit 1
no = compressors are not influenced by this alarm
$\mathbf{y E S}=$ compressors are turned off in case of high pressure (temperature) alarm of fans
AF5 Interval between 2 compressors turning off in case of high pressure (temperature) alarm for fans - circuit 1 ($0 \div 255 \mathrm{~min}$)
AF6 High pressure-switch intervention numbers - circuit 1: ($\mathbf{0} \div \mathbf{1 5}$). Every time the pressure-switch is activated all the compressors of the circuit 1 are turned off and the fan turned on. If the high pressure-switch is activated AF6 times in the AF7 interval, the compressors of the first circuit are switched off and the fans on, only the manually unlocking is possible.
AF7 High pressure-switch interventions time ($0 \div 255 \mathrm{~min}$) - circuit 1 Interval, linked to the AF6 parameter, for counting interventions of the high pressure-switch.
AF8 Fans on with delivery probe faulty - circuit $1(0 \div 15)$
AF9 Low pressure (temperature) alarm for fans - circuit 2: $\left(0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C} ; 1 \div 430\right.$ PSI; $1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)
The measurement unit depends on C45 parameter. AF9 is always subtracted to the set point SETF2. When the value SETF2-AF9 is reached the "Low alarm - Condenser 2 " is enabled, (possibly after the AF11 delay time)
AF10 High pressure (temperature) alarm for fans- circuit 2: $\left(0.10 \div 30.00 \mathrm{bar} ; 0.0 \div 100.0^{\circ} \mathrm{C} ; 1 \div 430\right.$ PSI; $1 \div 200.0^{\circ} \mathrm{F} ; 10 \div 3000 \mathrm{KPA}$)
The measurement unit depends on C45 parameter. AF10 is always added to the set point SETF2. When the value SETF2+AF10 is reached the "High alarm - Condenser 2" is enabled, (possibly after the AF11 delay time)
AF11 Low and High fan pressure (temperature) alarms delay - circuit 2 ($0 \div 255 \mathrm{~min}$) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.
AF12 Compressors off with pressure (temperature) alarm for fans- circuit 2
no = compressors are not influenced by this alarm
$\mathbf{y E S}=$ compressors are turned off in case of high pressure (temperature) alarm of fans
AF13 Interval between 2 compressors turning off in case of high pressure (temperature) alarm for fans - circuit 2 ($0 \div 255 \mathrm{~min}$)
AF14 High pressure-switch intervention numbers - circuit 2: ($0 \div 15$). Every time the pressure-switch is activated all the compressors of the circuit 2 are turned off and the fans turned on. If the high pressure-switch is activated AF14 times in the AF15 interval, the compressors of the second circuit are switched off and the fans on, only the manually unlocking is possible.
AF15 High pressure-switch interventions time ($0 \div 255 \mathrm{~min}$) - circuit 2 Interval, linked to the AF14 parameter, for counting interventions of the high pressure-switch.
AF16 Fans on with delivery probe faulty - circuit $2(0 \div 15)$
AF17 Relay activated in case of pressure (temperature) alarms of fans
nu = no relay activation, only visual signalling; Alr: all the C(i) outputs set as ALr; ALr1: all the C(i) outputs set as ALr1, ALr2: all the C(i) outputs set as ALr2

6.1.15 Dynamic Setpoint Suction (o1-o8)

01 Dynamic compressor set point function enabled - circuit 1
no = standard regulation
yES = the SETC1 varies according to the setting of O2, O3, O4.
WARNING the dynamic set point requires a dedicated probe, so it's necessary one of the aux probes is set for this function in other words Al 17 or Al 20 or Al 23 or Al 27 has to be set as otA1.
NOTE: if more than one probe is used for the optimization of the suction set point, only the higher temperature is considered.
02 Maximum compressor set point - circuit 1 (SETC1 \div CP3) It sets the maximum value of compressor set point used in the dynamic set point function. The measurement unit depends on C45 parameter.
O3 External temperature for maximum set point O2- circuit $1 \quad\left(-40 \div \mathrm{O}^{\circ}{ }^{\circ} \mathrm{C} \quad /-40 \div \mathrm{O} 4^{\circ} \mathrm{F}\right)$ It's the temperature detected by the external AUX probe, at which the maximum set point is reached.
04 External temperature for standard set point- circuit $1\left(\mathrm{O} 3 \div 150^{\circ} \mathrm{CO} \div 302^{\circ} \mathrm{F}\right)$

1. with AUX temper. < O3 ==> "Real SEtC1" $=\mathrm{O} 2$
2. with AUX temper. > O4 ==> "Real SEtC1" = SEtC1
3. with $\mathrm{O} 3<\mathrm{AUX}$ temper < O4 ==> SEtC1 < "Real SEtC1" < O2

O5 Dynamic compressor set point function enabled - circuit 2
no = standard regulation
$y E S=$ the SETC2 varies according to the setting of O6, O7, O8.
WARNING the dynamic set point requires a dedicated probe, so it's necessary one of the aux probes is set for this function in other words Al 17 or Al 20 or Al 23 or Al 27 has to be set as otA2.
NOTE: if more than one probe is used for the optimization of the suction set point, only the higher temperature is considered.
06 Maximum compressor set point - circuit 2 (SETC2 \div CP7) It sets the maximum value of compressor set point used in the dynamic set point function. The measurement unit depends on C45 parameter.
07 External temperature for maximum set point $\mathbf{O 6}$ - circuit $1 \quad\left(-40 \div \mathrm{OB}^{\circ} \mathrm{C} \quad /-40 \div \mathrm{OB}^{\circ} \mathrm{F}\right)$ It's the temperature detected by the external AUX probe, at which the maximum set point is reached.
O8 External temperature for standard set point- circuit $2\left(07 \div 150^{\circ} \mathrm{C} 07 \div 302^{\circ} \mathrm{F}\right)$

1. with AUX temper. < O7 ==> "Real SEtC2" = O6
2. with AUX temper. > O8 ==> "Real SEtC2" = SEtC2
3. with $\mathrm{O} 7<\mathrm{AUX}$ temper < O8 ==> SEtC2 < "Real SEtC2" < O6

Suction 2 凡
Set point

06

6.1.16 Dynamic Setpoint Condenser (o9-o14)

09 Dynamic set enabled for condenser- circuit 1
no = standard regulation
yES = the SETF1 varies according to the setting of O10, O11.
WARNING the dynamic set point requires a dedicated probe, so it's necessary one of the aux probes is set for this function in other words Al 17 or Al 20 or Al 23 or Al 27 has to be set as otC1
010 Minimum condenser set point - circuit 1 (F2 \div SETF1)
011 Differential for condenser dynamic set point -circuit $1\left(-50.0 \div 50.0^{\circ} \mathrm{C}\right.$; $\left.-90 \div 90^{\circ} \mathrm{F}\right)$. The way of working of this algorithm is explained in the following exemplum.

Example

With the external temperature (otc1) > SETF1-O11 ==> "real SEtF1" = SETF1
With the external temperature (otc1) < O10-O11 ==> "real SetF1"= O10
With O10-O11 < external temperature (otc1) < SETF1-O11 ==> O10 <"real SEtF1"< SEtF1
where
external temperature (otc1) is the temperature detected by the auxiliary probe set as otC1
Fan 1

Temperature
NOTE: if C45 = bar or PSI or KPA, O10 is bar or PSI, the XC1000D makes the changes required
Dynamic set enabled for condenser- circuit 2
no = standard regulation
$\mathbf{y E S}=$ the SETF2 varies according to the setting of O13, O14.
WARNING the dynamic set point requires a dedicated probe, so it's necessary one of the aux probes is set for this function in other words Al 17 or Al 20 or Al 23 or Al 27 has to be set as otC2.
013 Minimum condenser set point - circuit 2 (F6 \div SETF2)
014 Differential for condenser dynamic set point -circuit $2\left(-50.0 \div 50.0^{\circ} \mathrm{C}\right.$; $\left.-90 \div 90^{\circ} \mathrm{F}\right)$. The way of working of this algorithm is explained in the following exemplum.

Example

With the external temperature (otc2) > SETF2-O14 ==> "real SetF2" = SETF2
With the external temperature (otc2) < O13-O14 ==> "real SetF1"= O13
With O13-O14 < external temperature (otc1) < SETF2-O14 ==> O13 <"real SetF2"< SetF2
where
external temperature (otc2) is the temperature detected by the auxiliary probe set as otC2

6.1.17 Analog Outputs Configuration (1Q1-3Q1)

1Q1 Analog outputs $\mathbf{1 - 2}$ setting: $(4 \div 20 \mathrm{~mA}-0 \div 10 \mathrm{~V})$: It set the kind of output for the first 2 analogue outputs (term. 33-34-35).
3Q1 Analog outputs $3-4$ setting: $(4 \div 20 \mathrm{~mA}-0 \div 10 \mathrm{~V})$: It set the kind of output for the first 2 analogue outputs (term. 30-31-32).

6.1.18 Analog output 1 (102-1026)

1Q2 Analog output 1 function (term. 34-35)
FREE = pure analogue output
CPR = output for frequency compressor - circuit 1
CPR2 = output for frequency compressor - circuit 2
FAN = output for inverter fans - circuit 1 (only some fans driven by inverter, others enabled by on/off); FAN2 = output for inverter fans - circuit 2 (only some fans driven by inverter, others enabled by on/off);
INVF1 = not used
INVF2 = not used
nu = not used
1Q3
Reference probe for analogue output 1, it's used only when 1Q2 = FREE

Pbc1= Suction Probe, circuit 1 (term. 62-63 or 62-68)
Pbc2 = Suction Probe, circuit 2 (term. 64-63 or 64-68)
1Q4 Adjustment of read out for the analog output 1 ($-1.00 \div 100.00$ bar; $-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C}$; $58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}$). It's used only when 1 Q2 $=$ FREE
1Q5 Adjustment of read out for the analog output 1 at $20 \mathrm{~mA} / 10 \mathrm{~V}(-1.00 \div 100.00 \mathrm{bar} ;-15 \div 750 \mathrm{PSI}$; $\left.50 \div 150^{\circ} \mathrm{C} ;-58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}\right)$. It's used only when 1Q2 $=$ FREE
1Q6 Minimum value for analogue output 1 ($0 \div 100 \%$)
1Q7 Analog output 1 value after compressor start (1Q6 $\div 100 \%$) It's the value of the analogue output after a compressor has started, when the pressure/temperature is above the regulation band. - Used during inverter regulation
1 Q8 Analog output 1 value after a compressor is switched off (1Q6 $\div 100 \%$) It's the value of the analogue output when a compressor has been switched off and the the pressure/temperature is below the regulation band. - Used during inverter regulation
1 Q9 Exclusion band start value for analog output 1 (1Q6 $\div 100 \%$): it allows to exclude a range of frequencies that could create problems to the compressor. - Used during inverter regulation
1Q10 Exclusion band end value for analog output 1 (1Q9 $\div 100 \%$) - Used during inverter regulation
1Q11 Safety value for analog output $1 \quad(0 \div 100 \%)$: it's used in case of probe faulty.
1 Q12 Delay between the entrance in the regulation band and the regulation activation ($0 \div 255 \mathrm{sec}$): it's the delay between the entrance in the regulation band of pressure/temperature and the regulation start. Used to avoid false inverter starts dued to pressure variations. - Used during inverter regulation.
1 Q13 Analog output 1 rise time ($0 \div 255 \mathrm{sec}$). It's the time necessary to the analog output to pass from the 1Q6 to 100%, when a compressor has started and the pressure/temperature is above the regulation band. - Used during inverter regulation.
1 Q14 Analog output 1 permanency at 100% before load activation ($0 \div 255 \mathrm{sec}$): the analog output remains at 100% value for this time before a load is activated. - Used during inverter regulation
1 Q15 Delay between pressure (temperature) goes down the set point and start of analog output 1 decreasing ($0 \div 255 \mathrm{sec}$). - Used during inverter regulation
1 Q16 Analog output 1 decreasing time ($0 \div 255 \mathrm{sec}$) It's the time taken from the analog output to pass from the 100% to the 1Q6 value. It's used during the switching off phase, when the pressure is lower than the set point.
1 Q17 Analog output 1 permanency at 1 Q6 before a load is switched off ($0 \div 255 \mathrm{sec}$) When the pressure (temperature) is below the set point, the analog output remains at 1Q6 value for the 1Q17 before a load is switched off.
1 Q18 Analog output 1 decreasing time when a load is switched on ($0 \div 255 \mathrm{sec}$) It's the time necessary to the analog output to pass from 100\% to 1Q7 when a load is switched on.
1 Q19 Regulation band ($0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA}$). It is the band with the proportional action. It replaces CP1 for the inverter regulation. It is add to the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the 100% when the pressure/temperature is equal or higher than set +1 Q19.
1Q20 Integral time ($0 \div 999$ s; with 0 integral action excluded). It sets the pound of the proportional action. The higher is $1 Q 20$, the lower is the integral action support.
1 Q21 Band offset ($-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA}$). Used to move the regulation band across to the set point.
1 Q22 Integral action limitation ($0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA}$) to stop the increasing of integral action when the pressure reaches the SET + 1Q22 value.
1Q24 Minimum inverter capacity with poor lubrication ($0 \div 99 \%$; with 0 function excluded) If the frequency compressor works for the 1Q25 time with a frequency (in percentage) equal or lower than 1Q24, it is forced to work at 100\% for the 1Q26 time in order to make the right lubrication.
1Q25 Maximum inverter functioning time at a lower frequency than 1Q24, before working at 100\% ($1 \div 255 \mathrm{~min}$)
1Q26 Time of inverter functioning at $\mathbf{1 0 0 \%}$ to restore the right lubrication ($1 \div 255 \mathrm{~min}$)

6.1.19 Analog output 2 (2Q1-2Q25)

2Q1 Analog output 2 function (term. 33-34)
FREE = pure analogue output
CPR = output for inverter frequency compressor - circuit 1
CPR2 = output for inverter frequency compressor - circuit 2
FAN = output for inverter fans- circuit 1 (only some fans driven by inverter, others enabled by on/off);

```
    FAN2 = output for inverter fans - circuit 2 (only some fans driven by inverter, others enabled by on/off);
INVF1 = not used
INVF2 = not used
nu \(=\) not used
2Q2 Reference probe for analogue output 2, it's used only when 2Q1 = FREE
Pbc1 = Suction Probe, circuit 1 (term. 62-63 or 62-68)
Pbc2 = Suction Probe, circuit 2 (term. 64-63 or 64-68)
2Q3 Adjustment of read out for the analog output 2 at 4mA/OV ( \(-1.00 \div 100.00\) bar; -15 \(\div 750 \mathrm{PSI}\); \(50 \div 150^{\circ} \mathrm{C} ;-58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}\) ). It's used only when 2Q1 \(=\) FREE
2Q4 Adjustment of read out for the analog output 2 at \(20 \mathrm{~mA} / 10 \mathrm{~V}\) ( \(-1.00 \div 100.00\) bar; - \(15 \div 750 \mathrm{PSI}\); \(50 \div 150^{\circ} \mathrm{C}\); \(-58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}\) ). It's used only when \(2 \mathrm{Q} 1=\) FREE
2Q5 Minimum value for analogue output \(2(0 \div 100 \%)\)
2Q6 Analog output 2 value after compressor start ( \(2 \mathrm{Q} 5 \div 100 \%\) ) It's the value of the analogue output after a compressor has started, when the pressure/temperature is above the regulation band. - Used during inverter regulation
2 Q7
Analog output 2 value after compressor is switched off ( \(2 \mathrm{Q} 5 \div 100 \%\) ) It's the value of the analogue output when a compressor has been switched off and the the pressure/temperature is below the regulation band. - Used during inverter regulation
2Q8 Exclusion band start value for analog output 2 ( 2 Q5 \(\div 100 \%\) ): it allows to exclude a range of frequencies that could create problems to the compressor. - Used during inverter regulation
2Q9 Exclusion band end value for analog output \(2(2 \mathrm{Q} 8 \div 100 \%)\) - Used during inverter regulation
2Q10 Safety value for analog output \(2(0 \div 100 \%)\) : it's used in case of probe faulty.
2 Q11 Delay between the entrance in the regulation band and the regulation activation ( \(0 \div 255 \mathrm{sec}\) ): it's the delay between the entrance in the regulation band of pressure/temperature and the regulation start. Used to avoid false inverter starts dued to pressure variations. - Used during inverter regulation.
2Q12 Analog output 2 rise time \((0 \div 255 \mathrm{sec})\) It's the time necessary to the analog output to pass from the 1 Q6 to \(100 \%\), when a compressor has started and the pressure/temperature is above the regulation band. - Used during inverter regulation.
2Q13 Analog output 2 permanency before load activation ( \(0 \div 255 \mathrm{sec}\) ): the analog output remains at \(100 \%\) value for this time before a load is activated. - Used during inverter regulation
2Q14 Delay between pressure (temperature) goes down the set point and start of analog output 2 decreasing ( \(0 \div 255 \mathrm{sec}\) ). - Used during inverter regulation
2Q15 Analog output decreasing time \((0 \div 255 \mathrm{sec})\) lt's the time taken from the analog output to pass from the \(100 \%\) to the 2Q5 value. lt's used during the switching off phase, when the pressure is below the set point.
2Q16 Analog output 2 permanency at 2Q5 value before a load is switched off \((0 \div 255 \mathrm{sec})\) When the pressure (temperature) is below the set point, the analog output 2 remains at 2Q5 value before a load is switched off.
2Q17 Analog output 2 decreasing time when a load is switched on ( \(0 \div 255 \mathrm{sec}\) ) lt's the time necessary to the analog output to pass from \(100 \%\) to 2Q6 when a load is switched on.
2Q18 Regulation band ( \(0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA}\) ). It is the band with the proportional action. It replaces CP1 for the inverter regulation. It is add to the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the \(100 \%\) when the pressure/temperature is equal or higher than set + 2Q18.
2Q19 Integral time ( \(0 \div 999 \mathrm{~s}\); with 0 integral action excluded). It sets the pound of the proportional action. The higher is 1Q20, the lower is the integral action support.
2 Q20 Band offset ( \(\left.-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA}\right)\). Used to move the regulation band across to the set point.
2Q21 Integral action limitation ( \(0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA}\) ) to stop the increasing of integral action when the pressure reaches the SET + 1 Q22 value.
2Q23 Minimum inverter capacity with poor lubrication ( \(0 \div 99 \%\); with 0 function excluded) If the frequency compressor works for the 1Q25 time with a frequency (in percentage) equal or lower than 2Q23, it is forsed to work at \(100 \%\) for the 2Q25 time in order to make the right lubrication.
2Q24 Maximum inverter functioning time at a lower frequency than 2Q24, before working at 100\% ( \(1 \div 255 \mathrm{~min}\) )
2Q25 Time of Inverter al 100\% to restore the right lubrication ( \(1 \div 255 \mathrm{~min}\) )
```


6.1.20 Analog Output 3 (3Q2-3Q26)

3Q2 Analog output 3 function (term. 31-32)
FREE = pure analogue output
CPR = output for inverter frequency compressor - circuit 1
CPR2 = output for inverter frequency compressor - circuit 2
FAN = output for inverter fans - circuit 1 (only some fans driven by inverter, others enabled by on/off);
FAN2 = output for inverter fans - circuit 2 (only some fans driven by inverter, others enabled by on/off);
INVF1 = proportional inverter for fans of circuit 1 (all fans driven by inverter)
INVF2 = proportional inverter for fans of circuit 2 (all fans driven by inverter) nu = not used
3Q3 Reference probe for analogue output 3, it's used only when 3Q2 = FREE, INVF1 or INVF2
Pbc1 = Suction Probe, circuit 1 (term. 62-63 or 62-68)
Pbc2 = Suction Probe, circuit 2 (term. 64-63 or 64-68)
3Q4 Adjustment of read out for the analog output $3\left(-1.00 \div 100.00\right.$ bar; $-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C}$; $58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}$). It's used only when $3 Q 2=$ FREE
3Q5 Adjustment of read out for the analog output 3 at $20 \mathrm{~mA} / 10 \mathrm{~V}$ ($-1.00 \div 100.00 \mathrm{bar} ;-15 \div 750 \mathrm{PSI}$; $50 \div 150^{\circ} \mathrm{C} ;-58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}$). It's used only when 3Q2 $=$ FREE
3Q6 Minimum value for analogue output 3 ($0 \div 100 \%$)
3Q7 Analog output 3 value after load start ($3 \mathrm{Q} 6 \div 100 \%$) It's the value of the analogue output after a compressor has started, when the pressure/temperature is above the regulation band. - Used during inverter regulation
3Q8 Analog output 3 value after a load is switched off ($3 \mathrm{Q} 6 \div 100 \%$) It's the value of the analogue output when a compressor has been switched off and the the pressure/temperature is below the regulation band. - Used during inverter regulation
3Q9 Exclusion band start value for analog output 3 ($3 \mathrm{Q} 6 \div 100 \%$): it allows to exclude a range of frequencies that could create problems to the compressor. - Used during inverter regulation
3Q10 Exclusion band end value for analog output 3 (3Q9 $\div 100 \%$) - Used during inverter regulation
3Q11 Safety value for analog output $3 \quad(0 \div 100 \%)$: it's used in case of probe faulty.
3Q12 Delay between the entrance in the regulation band and the regulation activation ($0 \div 255 \mathrm{sec}$): it's the delay between the entrance in the regulation band of pressure/temperature and the regulation start. Used to avoid false inverter starts dued to pressure variations. - Used during inverter regulation.
3Q13 Analog output 3 rise time ($0 \div 255 \mathrm{sec}$). It's the time necessary to the analog output to pass from the 3Q6 to 100%, when a compressor has started and the pressure/temperature is above the regulation band. - Used during inverter regulation.
3Q14 Analog output 3 permanency at 100\% before load activation ($0 \div 255 \mathrm{sec}$): the analog output remains at 100% value for this time before a load is activated. - Used during inverter regulation
3Q15 Delay between pressure (temperature) goes down the set point and start of analog output 3 decreasing ($0 \div 255 \mathrm{sec}$). - Used during inverter regulation
3Q16 Analog output decreasing time ($0 \div 255 \mathrm{sec}$) It's the time taken from the analog output to pass from 100% to the 3Q8 value. It's used during the switching off phase, when the pressure is below the set point.
3Q17 Analog output 3 permanency at 3Q6 before a load is switched off ($0 \div 255 \mathrm{sec}$) When the pressure (temperature) is belove the set point, the analog output 3 remains at $3 Q 6$ value for the 3Q17 before a load is switched off.
3Q18 Analog output 3 decreasing time when a load is switched on ($0 \div 255 \mathrm{sec}$) It's the time necessary to the analog output to pass from 100% to 3Q7 when a load is switched on.
3Q19 Regulation band ($0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA}$). It is the band with the proportional action. It replaces CP1 for the inverter regulation. It is add to the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the 100% when the pressure/temperature is equal or higher than set + 3Q19.
3Q20 Integral time ($0 \div 999 \mathrm{~s}$; with 0 integral action excluded). It sets the pound of the proportional action. The higher is 3Q20, the lower is the integral action support.
3Q21 Band offset ($\left.-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA}\right)$. Used to move the regulation band across to the set point.
3Q22 Integral action limitation ($0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA}$) to stop the increasing of integral action when the pressure reaches the SET + 3Q22 value.

3Q24 Minimum inverter capacity with poor lubrication ($0 \div 99 \%$; with 0 function excluded) If the frequency compressor works for the 3Q25 time with a frequency (in percentage) equal or lower than 3Q24, it is forsed to work at 100\% for the 3Q26 time in order to make the right lubrication.
3Q25 Time of lower inverter time ($1 \div 255 \mathrm{~min}$)
3Q26 Time of Inverter at $\mathbf{1 0 0 \%}$ to restore the right lubrication ($1 \div 255 \mathrm{~min}$)

6.1.21 Analog output 4 (4Q1-4Q25)

4Q1 Analog output 4 function (term. 30-31)
FREE = pure analogue output
CPR = output for frequency compressor - circuit 1
CPR2 = output for frequency compressor - circuit 2
FAN = output for inverter fans- circuit 1 (only some fans driven by inverter, others enabled by on/off); FAN2 = output for inverter fans - circuit 2 (only some fans driven by inverter, others enabled by on/off);
INVF1 = proportional inverter for fans of circuit 1 (all the fans driven frequency)
INVF2 = proportional inverter for fans of circuit 2 (all the fans driven frequency)
nu = not used
4Q2 Reference probe for analogue output 4, it's used only when 4Q1 = FREE, INVF1 or INVF2.
Pbc3= Suction Probe, circuit 1 (term. 65-66 or 65-68)
Pbc4 = Suction Probe, circuit 2 (term. 66-67 or 67-68)
4Q3 Adjustment of read out for the analog output 4 at $4 \mathrm{~mA} / 0 \mathrm{~V}$ ($-1.00 \div 100.00 \mathrm{bar} ;-15 \div 750 \mathrm{PSI}$; $50 \div 150^{\circ} \mathrm{C} ;-58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}$). It's used only when 4Q1 $=$ FREE
4Q4 Adjustment of read out for the analog output 4 at $20 \mathrm{~mA} / 10 \mathrm{~V}$ ($-1.00 \div 100.00 \mathrm{bar} ;-15 \div 750 \mathrm{PSI}$; $50 \div 150^{\circ} \mathrm{C} ;-58 \div 302^{\circ} \mathrm{F} ;-100 \div 10000 \mathrm{KPA}$). It's used only when 4Q1 $=$ FREE
4Q5 Minimum value for analogue output 4 ($0 \div 100 \%$)
4Q6 Analog output 4 value after load start (4Q5 $\div 100 \%$) It's the value of the analogue output after a compressor has started, when the pressure/temperature is above the regulation band. - Used during inverter regulation
4Q7 Analog output 4 value after load is switched off (4Q5 $\div 100 \%$) It's the value of the analogue output when a compressor has been switched off and the the pressure/temperature is below the regulation band. - Used during inverter regulation
4Q8 Exclusion band start value for analog output 4 (4Q5 $\div 100 \%$): it allows to exclude a range of frequencies that could create problems to the compressor. - Used during inverter regulation
4Q9 Exclusion band end value for analog output 4 (4Q8 $\div 100 \%$)- Used during inverter regulation
4Q10 Safety value for analog output $4 \quad(0 \div 100 \%)$: it's used in case of probe faulty.
4Q11 Delay between the entrance in the regulation band and the regulation activation ($0 \div 255 \mathrm{sec}$): it's the delay between the entrance in the regulation band of pressure/temperature and the regulation start. Used to avoid false frequency starts dued to pressure variations. - Used during inverter regulation.
4Q12 Analog output 4 rise time $(0 \div 255 \mathrm{sec})$ It's the time necessary to the analog output to pass from the 1Q6 to 100%, when a compressor has started and the pressure/temperature is above the regulation band. - Used during inverter regulation.
4Q13 Analog output 4 permanency before load activation ($0 \div 255 \mathrm{sec}$): the analog output remains at 100% value for this time before a load is activated. - Used during inverter regulation
4Q14 Delay between pressure (temperature) goes down the set point and start of analog output 4 decreasing ($0 \div 255 \mathrm{sec}$). - Used during inverter regulation
4Q15 Analog output 4 decreasing time ($0 \div 255 \mathrm{sec}$) It's the time taken from the analog output to pass from 100% to the 4Q7 value. It's used during the switching off phase, when the pressure is below the set point.
4Q16 Analog output 4 permanency at 4Q5 before a load is switched off ($0 \div 255 \mathrm{sec}$) The analog output remains at 4Q5 value before a load is switched off.
4Q17 Analog output 4 decreasing time when a load is switched on ($0 \div 255 \mathrm{sec}$) It's the time necessary to the analog output to pass from 100\% to 4Q6 when a load is switched on.
4 Q18 Regulation band ($0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA}$). It is the band with the proportional action. It replaces CP1 for the inverter regulation. It is add to the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the 100% when the pressure/temperature is equal or higher than set + 4Q18.
4Q19 Integral time ($0 \div 999 \mathrm{~s}$; with 0 integral action excluded). It sets the pound of the proportional action. The higher is 1 Q20, the lower is the integral action support.

4Q20 Band offset ($\left.-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA}\right)$. Used to move the regulation band across to the set point.
4Q21 Integral action limitation ($0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA}$) to stop the increasing of integral action when the pressure reaches the SET + 1Q22 value.
4Q23 Minimum inverter capacity with poor lubrication ($0 \div 99 \%$; with 0 function excluded) If the frequency compressor works for the 1Q25 time with a frequency (in percentage) equal or lower than 4Q23, it is forsed to work at 100% for the 4Q25 time in order to make the right lubrication.
4Q24 Maximum inverter functioning time at a lower frequency than 4Q24, before working at 100\% (1 $\div 255 \mathrm{~min}$)
4Q25 Time of Inverter at $\mathbf{1 0 0 \%}$ to restore the right lubrication ($1 \div 255 \mathrm{~min}$)

6.1.22 Auxiliary Outputs (AR1-AR12)

AR1 Set point for auxiliary relay $1\left(-\mathbf{4 0} \div \mathbf{1 1 0}{ }^{\circ} \mathbf{C} /-\mathbf{4 0} \mathbf{\div} \mathbf{2 3} 0^{\circ} \mathrm{F}\right)$ it's is used for all the relays configured as AUS1.
AR2 Differential for aux relay $1\left(0,1 \div 25,0^{\circ} \mathbf{C} / \mathbf{1} \div 50^{\circ} \mathrm{F}\right)$ Intervention differential for relay AUX1.
Cooling (AR3 = CL): Cut IN is AR1+ AR2. Cut OUT is when the temperature reaches the set point AR1.
Heating (AR3=Ht): Cut IN is AR1- AR2. Cut OUT is when the temperature reaches the set point. AR1
AR3 Kind of action for aux. 1
CL = cooling
$\mathrm{Ht}=$ heating
AR4 Set point for auxiliary relay $2\left(-\mathbf{4 0} \div \mathbf{1 1 0} \mathbf{0}^{\circ} \mathbf{C} / \mathbf{- 4 0} \mathbf{- 2 3 0}{ }^{\circ} \mathrm{F}\right)$ it's is used for all the relays configured as AUS2.
AR5 Differential for aux relay $2\left(0,1 \div \mathbf{2 5}, \mathbf{0}^{\circ} \mathbf{C} / \mathbf{1} \div 50^{\circ} \mathrm{F}\right)$ Intervention differential for relay AUX2.
Cooling (AR6 = CL): Cut IN is AR4+ AR5. Cut OUT is when the temperature reaches the set point AR4.
Heating $(A R 36=\mathbf{H t})$: Cut IN is AR4- AR5. Cut OUT is when the temperature reaches the set point. AR4
AR6 Kind of action for aux. 2
CL = cooling
$\mathrm{Ht}=$ heating
AR7 Set point for auxiliary relay $\mathbf{3}\left(-\mathbf{4 0} \div \mathbf{1 1 0 ^ { \circ }} \mathbf{C} /-\mathbf{4 0} \div \mathbf{2 3 0}{ }^{\circ} \mathrm{F}\right)$ it's is used for all the relays configured as AUS3.
AR8 Differential for aux relay $1\left(0,1 \div \mathbf{2 5}, \mathbf{0}^{\circ} \mathbf{C} / \mathbf{1} \div \mathbf{5 0}{ }^{\circ} \mathrm{F}\right)$ Intervention differential for relay AUX3.
Cooling (AR3 = CL): Cut IN is AR7+ AR8. Cut OUT is when the temperature reaches the set point AR7.
Heating (AR8=Ht): Cut $I N$ is AR7- AR8. Cut OUT is when the temperature reaches the set point. AR7-
AR9 Kind of action for aux. 3
CL = cooling
$\mathrm{Ht}=$ heating
AR10 Set point for auxiliary relay $\mathbf{4}\left(-\mathbf{4 0} \div \mathbf{- 1 1 0 ^ { \circ }} \mathbf{C} /-\mathbf{4 0} \div \mathbf{2 3 0}{ }^{\circ} \mathrm{F}\right)$ it's is used for all the relays configured as AUS4.
AR11 Differential for aux relay $\mathbf{4}\left(\mathbf{0 , 1 \div 2 5 , 0 ^ { \circ }} \mathbf{C} / \mathbf{1} \div 50^{\circ} \mathrm{F}\right)$ Intervention differential for relay AUX4.
Cooling (AR12 = CL): Cut $I N$ is AR10+ AR11. Cut OUT is when the temperature reaches the set point AR10.
Heating (AR12=Ht): Cut IN is AR10-AR11. Cut OUT is when the temperature reaches the set point. AR10
AR12 Kind of action for aux. 4
CL = cooling
$\mathrm{Ht}=$ heating

6.1.23 Other (oT1-oT9)

OT1 Alarm relay off by keyboard It's referred to the relay with terminals 84-85-86 no = alarm relay remains on for all the duration of the alarm $\mathbf{y E S}=$ the alarm relay is switched off by pushing a key
OT2
Alarm relay polarity

```
        OP = alarm conditions 84-85 closed
        CL = alarm conditions 84-85 open
        Alarm relay 1 off by keyboard It's referred to the relays configured as ALr1
        no = alarm relay remains on for all the duration of the alarm
        yES = the alarm relay is switched off by pushing a key
OT4 Alarm relay 1 polarity
        OP = the alarm relay terminals are open during an alarm
        CL = the alarm relay terminals are closed during an alarm
OT5 Alarm relay 2 off by keyboard lt's referred to the relays configured as ALr2
        no = alarm relay remains on for all the duration of the alarm
        yES = the alarm relay is switched off by pushing a key
        Alarm relay 2 polarity
        OP= the alarm relay terminals are open during an alarm
        CL = the alarm relay terminals are closed during an alarm
OT7 Serial address
                1\div247
        Serial address 
        Serial address for keyboard not used
OT9 Off function enabling
        no = it's not possible to switch the controller off by keyboard
        YES = it's possible to switch the controller off by keyboard
```


7. Regulation

7.1 Neutral zone adjustment - only for compressors

This kind of regulation is available only for compressors. It is used if the parameter C37 = db (C38 = db for circuit 2). The following observations are availables only for adjustment without inverter. In this case the neutral zone (CP1) is symmetrical compared to the target set point, with extremes: set+CP1/2 ... set-CP1/2. If the pressure (temperature) is inside this zone the controller maintains the same number of loads switched on and off, without changing anything.
When the pressure (temperature) goes out from the zone, regulation starts. If the pressure is greater than SET+CP1/2, the loads are switching on with timing given by CP11parameter.
A load is turned on only if the his safety times:
CP9 Minimum time between 2 following switching ON of the same compressor ($0 \div 255 \mathrm{~min}$).
CP10 Minimum time between the switching off of a compressor and the following switching on. ($0 \div 255 \mathrm{~min}$).
Note: usually CP9 is greater than CP10
CP13 Minimum time load on ($0 \div 99.5 \mathrm{~min}$; res. 1 sec)
are over.
Regulation stops when the pressure (temperature) comes back into the neutral zone.
In the following a simplify example that explains the regulation in neutral zone for compressor homogeneous with 1 step for each compressors. The safety times CP9, CP10, CP13 are not considered. In the real regulation the a load is entered or turned off only if these times are over.

Ex. Dead band control, compressors with same capacities, 1 step for each compressor. In this example:

C1 $=\mathbf{c P r} 1 ; \mathbf{C}=\mathbf{c P r} 1 ; \mathbf{C} \mathbf{= c P r}$; number of compressors first circuit.
$\mathbf{C 3 5}=\mathbf{d b}$ dead band regulation
C39 $=y E S \quad$ rotation
CP16 = no "CP11" delay not enabled at first calling after an equilibrium condition.
CP17 = no "CP12" delay not enabled at first calling after an equilibrium condition.

7.2 Proportional band adjustment - for compressors and fans

This kind of regulation is available for compressors and fans. It is used by compressors if the parameter $\mathrm{C} 37=\mathrm{Pb}$ (C38 = Pb for circuit 2). The following observations are availables only for adjustment without inverter. Compressors and fans work in the same way.
Example:
In this case the regulation band (CP1) is divided into as many parts as there are stages according to the following formula:
\# steps $=\mathbf{C}(\mathrm{i})=$ CPr1 or Step (number of compr. or steps).
The numbers of stages switched ON is proportional to the value of the input signal: when this distances itself from the target set point and enters the various bands, the compressors are switched ON, to be then turned OFF when the signal brings near the set point.

In this way if the pressure is greater than regulation band, all the compressors are on, if the pressure (temperature) is lower than the regulation band all the compressors are off.
Naturally also for this regulations all the delays (CP11 and CP12) safety times (CP9, CP10, CP13) are taken in account.

Regulation according to the running hours

The algorithm switch on and off the loads according to the running hours of each load. In this way the running hours are balanced.

Example

$\mathbf{C 1}=\mathbf{c P r} 1 ; \mathbf{C} 2=\mathbf{c P r} 1 ; \mathbf{C} 3=\mathbf{c P r} 1 ; \mathbf{C} 4=\mathbf{c P r} 1: \quad 4$ compressors
$\mathbf{C 3 7}=\mathrm{Pb}$ proportional band regulation
C39 $=$ yES rotation
CP16 = no "CP11" delay not enabled at first calling after a regulation zone.
CP17 = no "CP12" delay not enabled at first calling after a regulation zone.

8. SCREW COMPRESSORS

Loads activation is managed by the neutral zone. They follows general rules of step compressors:
a. C1..C14 = screw1 or screw2 have to be present, following C2..C15 that are set as Stp, are linked to C1..C14 = screw
The relay group is activated depending on the kind of screw compressors that has been selected on the C16 parameter.

8.1 Regulation with screw compressors like Bitzer/ Hanbell/ Refcomp etc

Screw compressors like Bitzer use up to 4 valves for the power regulation.
The first valve is used during the starting phase for the C35 max time, after this time, the step 2 is automatically activated.
Through the C36 parameter it is possible to decide if the step 1 can be subsequently used during the standard thermoregulation.

8.1.1 Relay activation

ES. Compressor with 4 steps:
$\mathbf{C 1}=$ Scrw1; C2 $=$ Stp; C3 $=$ Stp; C4 = Stp; C16 = Btz
a. Activation with valves ON due to voltage presence ($\mathrm{C} 17=\mathrm{CL}$).

	C1 = Screw1	C2 $=$ stp	C3 = stp	C4 = stp
Step 1 (25\%)	ON	ON	OFF	OFF
Step 2 (50\%)	ON	OFF	ON	OFF
Step 3 (75\%)	ON	OFF	OFF	ON
Step 4 (100\%)	ON	OFF	OFF	OFF

b. Activation with valves ON due to voltage absence ($\mathrm{C} 17=\mathrm{OP}$).

	C1 = Screw1	C2 \boldsymbol{s} stp	C3 = stp	C4 $=$ stp
Step 1 (25\%)	ON	OFF	ON	ON
Step 2 (50\%)	ON	$O N$	$O F F$	$O N$
Step 3 (75\%)	ON	$O N$	$O N$	$O F F$
Step 4 (100\%)	ON	$O N$	$O N$	$O N$

8.2 Regulation with screw compressors like Frascold

Screw compressors like Frascold use up to 3 valves for the power regulation.
The first valve is used during the starting phase for the C35 max time, after this time, the step 2 is automatically activated.
Through the C36 parameter it is possible to decide if the step 1 can be subsequently used during the standard thermoregulation.

8.2.1 Relay activation

ES. Compressor with 4 steps:
$\mathbf{C 1}=$ Scrw1; $\mathbf{C} 2=$ Stp; $\mathbf{C} 3=$ Stp; $\mathbf{C 4}=$ Stp; $\mathbf{C 1 6}=$ Frtz
a. Activation with valves ON due to voltage presence. (C17=CL)

	C1 = Screw1	C2 \boldsymbol{s} stp	C3 $=$ stp	C4 $\boldsymbol{\text { stp }}$
C1 = Screw1	ON	OFF	OFF	OFF
C1 = Screw1	ON	ON	ON	OFF
C1 = Screw1	ON	ON	OFF	ON
C1 = Screw1	ON	ON	OFF	OFF

b. Activation with valves ON due to voltage absence. (C17=oP)

	oAi $=$ Screw1	oAi+1 = stp	oAi+2 = stp	oAi+3 = stp
Step 1 (25\%)	ON	ON	ON	ON
Step 2 (50\%)	ON	OFF	OFF	ON
Step 3 (75\%)	ON	OFF	ON	OFF
Step 4 (100\%)	ON	OFF	ON	ON

9. ANALOG OUTPUTS FOR INVERTER

9.1 Compressor management

The analog outputs can be used in a rack with frequency compressor, driven by an inverter. The regulation of the compressors in this case is changed as described in the following graph: The following examples shows the behaviour of the analog output with proportional regulation.

ES.
3 compressors, 1 frequency compressor
$\mathrm{C} 1=\mathrm{FRQ} 1 \quad \mathrm{C} 37=\mathrm{db} 1 \mathrm{Q} 8<100$
C2 $=$ CPR1 1 1Q2 $=$ CPR
C3 $=$ CPR1 $\quad 1$ Q7 <100

where
1Q6 Minimum value for analog out. 1
$0 \div 100$ \%
1 Q7 Analog output1 value after compressor on
$1 \mathrm{Q} 6 \div 100 \%$
1 Q8 Analog output1 value after compressor off
$106 \div 100 \%$
1 Q12 Regulation delay after entering the regulation band $0 \div 255$ (sec)
1Q13 Analog output 1 rise time from 1Q6 to 100% when the pressure is above the regulation $0 \div 255$ (sec) band and a load is switched on.
1Q14 Analog output 1 permanency at 100\% before load activation $0 \div 255(\mathrm{sec})$
1Q15 Delay between pressure (temperature) goes down the set point and start of analog $0 \div 255$ (sec) output 1 decreasing
1Q16 Analog output 1 decreasing time from 100% to the 1Q6 value $0 \div 255$ (sec)
1 Q17 Analog output1 permanency at 1Q6 before a load is switched off $0 \div 255$ (sec)
1Q18 Analog output1 decreasing time, from 100% to 1 Q7 when a load is switched on $0 \div 255$ (sec)

EX.
3 compressors, 1 frequency compressor,
$\mathrm{C} 1=\mathrm{FRQ} 1 \quad \mathrm{C} 37=\mathrm{db} 1 \mathrm{Q} 8=100$
C2 $=$ CPR1 1 1Q2 $=$ CPR
$\mathrm{C} 3=\mathrm{CPR} 1 \quad 1$ 1Q7 $=100$

where
1Q6 Minimum value for analog out. 1
$0 \div 100$ \%
1Q12 Regulation delay after entering the regulation band
$0 \div 255$ (sec)
1 Q14 Analog output 1 permanency at 100% before load activation
1Q15 Delay between pressure (temperature) goes down the set point and start of analog output 1 decreasing
CP11 2 different load start delay
$0 \div 255$ (sec)
$0 \div 255$ (sec)

CP12 2 different load off delay
$0 \div 99.5$ (min.1sec)
$0 \div 99.5$ (min.1sec)

9.2 Fans management with inverter- 1 fans group with inverter mode, others ON in on/off mode

With this configuration, one analog output can be used to drive the inverter (1Q2 or 2Q1 or 3Q2 or 4Q1 = FAN or FAN2). Set the first fans relay as inverter (FRQ1F or FRQ2F), and other relays as fans (FAN1 or FAN2).
ES.: 4 fans, 1 with inverter. Analog output 1 drives the inverter
C1 $=$ FRQ1F $\quad 1$ Q2 $=$ FAN
C2 $=$ FAN1
C3

1 Q6 Minimum value for analog output 1
1 Q7 Analog output 1 value after fan activation
1Q8 Analog output 1 value after fan deactivation
1Q12 Regulation delay of analog output 1 when the pressure is in
1Q13 Analog output 1 rise time from 1Q6 to 100% when the pressure is outside the $0 \div 255(\mathrm{sec})$ regulation band
1Q14 Analog output 1 permanency at 100% before load activation $0 \div 255$ (sec)
1Q16 Analog output 1 decreasing time from 100% to 1Q6 $0 \div 255(\mathrm{sec})$
1Q17 Analog output 1 permanency at 1Q6 before a fan is switched off with pressure below $0 \div 255$ (sec) the set
1Q18 Analog output 1 decreasing time, from 100% to 1 Q7 before a load is switched on $0 \div 255$ (sec)

9.3 Management of all fans with inverter - proportional inverter

In this case all fans of the condensing group are driven by one inverter.
The power used by the inverter is proportional to the delivery pressure value.
Set one relay as inverter (FRQ1F or FRQ2F) and set the analog output 3 or 4 to drive it (3Q2 or 4Q1 = INVF1 or INVF2).
The reference probe is the probe set on parameter 3 Q 3 or $4 \mathrm{Q} 2=\mathrm{PBC} 3$ or PBC 4 , respectively the delivery probe circuit 1 and 2.
The analog output is managed in proportional mode according to the pressure/temperature between the SETF and the SETF1 + 3Q19 (or 4Q18).

Below the SETF the output is OFF, above the SETF the output works at 100%.
If the delivery pressure/temperature is higher than the SETF1(2) value, the relay set as inverter is ON; if the delivery pressure is lower than the SETF1(2) value the relay is OFF.

9.3.1 Use of fans thermal protection

With this configuration it's possible to use XC1000D digital inputs to monitor the fans functioning. It's necessary to set as much relay as used fans. Connect the thermal protection of every fans to its digital input of the relay set as fan.
DON'T USE relays set as fans.
ES.: 4 fans, driven by one inverter.

| C1 $=$ FRQ1F | C2 $=$ FAN1 | C3 $=$ FAN1 | C4 $=$ FAN1 |
| :--- | :--- | :--- | :--- |\quad C5 = FAN1

With this configuration, connect the thermal protection of:

- fan 1 to terminals: 5-6 (i.d. 2)
- fan 2 to terminals: 7-8 (i.d. 3)
- fan 3 to terminals: 9-10 (i.d. 4)
- fan 4 to terminals: 11-12 (i.d. 5)

In this way any fans problem is sent to the controller (even if doesn't affect the regulation)

10. Alarm list

Usually alarm conditions are signalled by means of:

1. Activation of alarm relays
2. Buzzer activation
3. Message on proper display
4. Log of alarms, hour, data and duration
10.1 Alarm conditions - summary table

Code	Description	Cause	Action	Reset
$\begin{array}{\|l} \hline \text { EOL1 } \\ \text { (EOL2) } \end{array}$	Low pressureswitch alarm for circuit 1 (2)	Low pressure switch input 1 (2) enabled, terminals 52-53 (56-57).	- All compressors of circuit 1 (2) are turned off. Fans unchanged.	Automatically if the number of activation are less than Ac12 (Ac16) in the Ac13 (Ac17) time when the input is disable. - The compressors restarts working according to the working algorithm. Manually(if Ac12 (Ac16) activation happened in the Ac13 (Ac17) time When the input is disable: a. turn off and on the instrument.. The compressors restarts working according to the working algorithm.
$\begin{aligned} & \hline \mathrm{EOH1} \\ & (\mathrm{EOH} 2) \end{aligned}$	High pressure switch fro circuit 1 (2) alarm	High pressure switch input 1 (2) enabled - terminals 54-55 (58-59)	$-\quad$ All compressors of circuit 1 (2) are turned off. All fans are of circuit 1 (2) turned on.	Automatically if the number of activation are less than AF7 (AF14) in AF8 (AF15) time when the input is disable. Compressors and fans restart working according to the working algorithm. Manually if AF7 (AF14) activation happened in the AF8 (AF15) time When the input is disable: - turn off and on the instrument.. Compressors and fans restarts working according to the working algorithm.
P1 (P2)	Suction probe circuit 1 (2) failure alarm	Probe 1 (2) failure or out of range	$-\quad$The compressors are activated according to the AC14 (AC18) parameters.	Automatically as soon as the probe restarts working.
P3 (P4)	Condensing probe circuit 1 (2) failure alarm	Probe 3 (4) failure or out of range	$-\quad$The fans are activated according to the AF8 (AF16) parameters.	Automatically as soon as the probe restarts working.
$\begin{array}{\|l} \hline \text { EA1 } \div- \\ \text { EA15 } \end{array}$	Compressor safeties alarm	Safeties compressor input activation. NOTE: with step compressors 1 input for each compressor has to be used.	$-\quad$ the corresponding compressor is turned off. (with step compressors all relays referred to the input are disabled).	Automatically as soon as the input is disabled.
A02F	Fan safeties alarm	Safeties fan input activation.	$\begin{array}{\|l\|l\|} \hline- & \text { The } \\ \text { corresponding } \\ \text { output is disabled } \end{array}$	Automatically as soon as the input is disabled.

Code	Description	Cause	Action	Reset
$\begin{aligned} & \hline \text { LAC1 } \\ & \text { (LAC) } \end{aligned}$	Minimum pressure (temperature) alarm compressors for circuit 1 (2)	Suction pressure or temperature lower than SETC1-AC3 (SETC2-AC6) value	- signalling only	Automatically: as soon as the pressure or temperature reaches the SETC1-AC3 (SETC2 AC6) + differential value. (differential $=0.3$ bar or $1^{\circ} \mathrm{C}$)
$\begin{array}{\|l\|l\|} \hline \text { LAF1 } \\ \text { (LAF2 } \end{array}$	Minimum pressure (temperature) alarm fans section for circuit 1 (2)	Condensing pressure or temperature lower than SETF1-AF1 (SETF2-AF9) value	- signalling only	Automatically: as soon as the pressure or temperature reaches the (SETF1-AF1 (SETF2 AF9) + differential) value. (differential $=0.3$ bar or $1^{\circ} \mathrm{C}$)
$\begin{aligned} & \hline \text { HAC1 } \\ & \text { (HAC2 } \end{aligned}$	Maximum pressure (temperature) alarm compressors for circuit 1 (2)	Suction pressure or temperature higher than SETC1+AC4 (SETC2 +AC7) value	- signalling only	Automatically: as soon as the pressure or temperature reaches the (SETC1-AC4 (SETC2 AC7) - differential) value. (differential $=0.3$ bar or $1^{\circ} \mathrm{C}$)
HAF1 (HAF2	Maximum pressure (temperature) alarm fans section for circuit 1 (2)	Condensing pressure or temperature higher than SETF1+AF2 (SETF2 +AF10) value	- It depends on parameter AF4 (AF12)	Automatically: as soon as the pressure or temperature reaches the SETF1+AF2 (SETF2 +AF10) - differential value. (differential $=0.3$ bar or $1^{\circ} \mathrm{C}$)
$\begin{aligned} & \hline \text { LL1(LL } \\ & \text { 2) } \end{aligned}$	Liquid level alarm for circuit 1 (2)	Proper digital input enabled	- signalling only	Automatically as soon as the input is disabled
Clock failure	Clock failure alarm	Problem on RTC board	- signalling only With this alarm the activation by RTC of the reduced set point and the alarm log are not available.	Manually: it is necessary to replace the RTC board.
Set clock	Clock data lost	The clock back up battery is exhausted		Manually: set the data and the time
$\begin{array}{\|l} \hline \text { SEr1 } \div \mathrm{S} \\ \mathrm{Er} 15 \end{array}$	Compressors maintenance alarm	A compressor has worked for the time set in the AC10 parameter	- signalling only	Manually: reset the running hour of the compressor (see par. 4.5)

11. Configuration errors

Error N.	Parameters	Alarm description	Action
1	C1-C15 different from Screw1 or Screw2 $\mathrm{C} 16=\mathrm{Btz} \text { or Frsc }$	Compressors configuration alarm. Set properly par. C16	Machine stop (all relays configured as compr. or fans OFF)
2	One of C1-C15 parameters= Screw1 or Screw2 $\mathrm{C} 16=\mathrm{SPO}$	Compressors configuration alarm. Set properly par. C16	Machine stop (all relays configured as compr. or fans OFF)
3	One of C1-C15 parameters configured as StP. Don't configure any C1-C15 parameter as compressor.	Presence valve without compressor	Machine stop (all relays configured as compr. or fans OFF)
4	One of C1-C15 parameters = Frq1 after CPR1; One of C1-C15 parameters = Frq2 after CPR2	Compressor before inverter: check C1-C15 parameters or More than one relay set as inverter: check C1-C15 parameters. or One relay set as frequency compressors and none analog output set: check C1C15 parameters and: 1Q2, 2Q1, 3Q2, 4Q1.	Machine stop (all relays configured as compr. or fans OFF)
5	One of C1-C15 parameters = Frq1F after FAN1; One of C1C15 parameters $=$ Frq2F after FAN2	Fan before inverter: check C1-C15 parameters. More than one relay set as inverter: check C1-C15 parameters. or One relay set as fan inverter and no analog output set: check C1-C15 parameters and: 1Q2, 2Q1, 3Q2, 4Q1.	Machine stop (all relays configured as compr. or fans OFF)
6	One of C1-C15 parameters = Screw1 or Screw2 followed by more than 3 stp C16 $=$ Btz or Frsc	Number of wrong compressor steps: check C1-C15 parameters.	Machine stop (all relays configured as compr. or fans OFF)

12. Mounting \& installation

The instruments are suitable only for internal use. They are din rail mounted.
The ambient operating temperature range is between $0 \div 60^{\circ} \mathrm{C}$.
Avoid locations subject to heavy vibration, corrosive gases or excessive dirt. The same applies to the probes. Ensure ventilation around the instrument.
12.1 XC1000D dimensions

12.2 VG810 dimensions and mounting

13. Electrical connections

The instruments are provided with disconnectable screw terminal blocks to connect cables with a cross section up to $2,5 \mathrm{~mm}^{2}$.
Before connecting cables make sure the power supply complies with the instrument's requirements. Separate the input connection cables from the power supply cables, from the outputs and the power connections. Do not exceed the maximum current allowed on each relay, in case of heavier loads use a suitable external relay.

13.1 Probes connection

Pressure probe (4-20 mA): respect the polarity. If using terminal ends be sure there are no bear parts which could cause short circuiting or introduce noise disturbance at high frequencies. To minimise the induced disturbances use shielded cables with the shield connected to earth.
Temperature probe: it is recommended to place the temperature probe away from direct air streams to correctly measure the temperature.

14. RS485 serial link

All models can be integrated into the monitoring and alarm system using the RS485 serial port. They use the standard ModBus RTU protocol, so they can be fitted in a system integrator using this protocol.

15. Technical features

Housing: plastic self extinguishing V0.

Case: 175x132 mm; depth 60 mm .
Mounting: DIN rail mounting
Number of configurable relays: XC1015D: 15 (relè 7A 250Vac)
XC1011D: 11 (relè 7A 250Vac)
XC1008D: 8 (relè 7A 250Vac)
Analog inputs:
XC1011D, XC1015D: $4 \times 4-20 \mathrm{~mA} \circ 0 \div 5 \mathrm{~V}$ o NTC configurable probe.
XC1008D: $2 \times 4-20 \mathrm{~mA}$ o $0 \div 5 \mathrm{~V}$ o NTC configurable probe.
Safety alarm inputs - main voltage:
XC1008D: 8, main voltage, connected to the loads
XC1011D: 11, main voltage, connected to the loads
XC1015D: 15, main voltage, connected to the loads
Configurable digital input:
XC1011D, XC1015D: 4, free voltage.
XC1008D: 2, free voltage.
Safety Pressure switch inputs
XC1011D, XC1015D: 4 main voltage, LP and HP.
XC1008D: 2 main voltage, LP and HP.
Global Alarm output: 1 relay 8A 250Vac
Power supply: $24 \mathrm{Vac} / \mathrm{dc} \pm 10 \%$,
Type of refrigerant: R22, R134a, R404a,R507
Alarm logger: the last 100 alarm conditions are stored and displayed
Easy programming: via hot- key
Communication Protocol: Standard ModBus RTU, full documented
Operating temperature: $0 \div 60^{\circ} \mathrm{C}$
Storage temperature: $-30 \div 85^{\circ} \mathrm{C}$
Resolution: $1 / 100 \mathrm{Bar}, 1 / 10^{\circ} \mathrm{C}, 1^{\circ} \mathrm{F}, 1 \mathrm{PSI}$
Accuracy: better than 1% of F.S.
RTC back up battery: full load battery: tipical: 6 months, minimum: 4 month

16. Default setting

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ \text { D } \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ D \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \text { D } \end{gathered}$	Level	Description	Range
SETC1	-18.0	-18,0	-18,0	Pr1	Compressor set point circuit 1	
SETF1	35.0	35,0	35,0	Pr1	Fan set point circuit 1	
SETC2	-18.0	-18,0	-18,0	Pr1	Compressor set point circuit 2	
SETF2	35.0	35,0	35,0	Pr1	Fan set point circuit 2	
CO	1A1d	1A1D	1A1D	Pr2	Kind of plant	$\begin{aligned} & \text { OA1d(0) - 1AOd(1) - 1A1d(2) - 0A2d(3) - } \\ & \text { 2A0d(4)-2A1d(5) -2A2d(6) } \\ & \hline \end{aligned}$
C1	CPr1	CPr1	CPr1	Pr2	Relay 1 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C2	CPr1	CPr1	CPr1	Pr2	Relay 2 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C3	CPr1	CPr1	CPr1	Pr2	Relay 3 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C4	CPr1	CPr1	CPr1	Pr2	Relay 4 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C5	Fan1	CPr1	CPr1	Pr2	Relay 5 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C6	Fan1	Fan1	Fan1	Pr2	Relay 6 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C7	Fan1	Fan1	Fan1	Pr2	Relay 7 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C8	Fan1	Fan1	Fan1	Pr2	Relay 8 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C9	-	Fan1	Fan1	Pr2	Relay 9 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C10	-	Fan1	Fan1	Pr2	Relay 10 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C11	-	FAn1	nu	Pr2	Relay 11 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C12	-	-	nu	Pr2	Relay 12 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C13	-	-	nu	Pr2	Relay 13 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C14	-	-	nu	Pr2	Relay 14 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C15	-	-	nu	Pr2	Relay 15 configuration	Frq1; Frq2; CPr1; CPr2; StP; Frq1F; Frq2F; FAn1; FAn2; Alr; ALr1; ALr2; AUS1; AUS2; AUS3; AUS4; onF; nu
C16	SPo	SPo	SP0	Pr2	Kind of compressors	SPo(0) - dPo(1)
C17	CL	cL	cL	Pr2	Valve polarity circuit 1	OP - CL
C18	-	cL	cL	Pr2	Valve polarity circuit 2	OP - CL

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ D \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ \text { D } \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \text { D } \end{gathered}$	Level	Description	Range
C34	404	0	0	Pr2	Kind of gas	$0 \div 255$
C35	60	0	0	Pr2	Screw compressors' second step activation delay	$0 \div 255$
C36	NO	0	0	Pr2	Screw compressors' first step used in regulation	$0 \div 255$
C37	db	0	0	Pr2	Regulation for compressor circuit 1	$0 \div 255$
C38	-	0	0	Pr2	Regulation for compressor circuit 2	$0 \div 255$
C41	YES	0	0	Pr2	Compressor rotation circuit 1	$0 \div 255$
C42	-	0	0	Pr2	Compressor rotation circuit 2	$0 \div 255$
C45	YES	0	0	Pr2	Fan rotation circuit 1	$0 \div 255$
C44	-	0	0	Pr2	Fan rotation circuit 2	$0 \div 255$
C45	C/dec	0	0	Pr2	Displaying measurement unit	$0 \div 255$
C46	rEL	0	0	Pr2	Pressure display (rel/abs)	$0 \div 255$
Al1	Cur	Cur	Cur	Pr2	Kind of probe of P1 \& P2	Cur(0) - Ptc(1) - ntc(2) - rAt(3)
Al2	-0,5	-0.50	-0.50	Pr2	Probe 1 readout at 4mA/0V	$(-1.00 \div \mathrm{Al} 3)^{\text {BAR }} \quad(-15 \div \mathrm{Al3})^{\text {PSI }}$
Al3	11,0	11.00	11.00	Pr2	Probe 1 readout at $20 \mathrm{~mA} / 5 \mathrm{~V}$	(Al2 $\div 100.00)^{\text {BAR }} \quad(\mathrm{Al} 2 \div 750)^{\text {PSI }}$
Al4	0,0	0.0	0.0	Pr2	Probe 1 calibration	$\begin{array}{\|lll} \left.\hline \text { (dEU=bar } 0^{\circ} \mathrm{C}\right)-12.0 \div 12.0 & \text { (dEU=PSI } \left.0^{\circ} \mathrm{F}\right) & -120 \div \\ 120 & \\ \hline \end{array}$
AI5	-	-0.50	-0.50	Pr2	Probe 2 readout at 4mA/OV	$(-1.00 \div \mathrm{Al6})^{\text {BAR }} \quad(-15 \div \mathrm{Al6})^{\text {PSI }}$
Al6	-	11.00	11.00	Pr2	Probe 2 readout at $20 \mathrm{~mA} / 5 \mathrm{~V}$	(AI5 $\div 100.00)^{\text {BAR }}$ (AI5 $\left.\div 750\right)^{\text {PSI }}$
Al7	-	0.0	0.0	Pr2	Probe 2 calibration	(dEU=bar $0^{\circ} \mathrm{C}$) $-12.0 \div 12.0$ (dEU=PSS10 $\left.{ }^{\circ} \mathrm{F}\right) \quad-120 \div 120$
Al8	Cur	Cur	Cur	Pr2	Kind of probe of P3 \& P4	Cur(0) - Ptc(1) - ntc(2) - rAt(3)
AI9	0,0	0.00	0.00	Pr2	Probe 3 readout at 4mA/OV	$\left(-1.00 \div\right.$ Al10) ${ }^{\text {BAR }} \quad(-15 \div$ Al10)PSI
Al10	30,0	30.00	30.00	Pr2	Probe 3 readout at $20 \mathrm{~mA} / 5 \mathrm{~V}$	(A19 $\div 100.00$) ${ }^{\text {BAR }}$ (A19 $\div 750$)PSI
Al11	0,0	0.0	0.0	Pr2	Probe 3 calibration	$\begin{array}{lll} \left(\text { deUU=bar } 0^{\circ} \mathrm{C}\right) \\ 120 & \left.-12.0 \div 12.0 \quad \text { (dEU=PSIO }{ }^{\circ} \mathrm{F}\right) & -120 \div \\ \hline \end{array}$
Al12	-	0.00	0.00	Pr2	Probe 4 readout at 4mA/OV	$\left(-1.00 \div\right.$ Al13) ${ }^{\text {BAR }} \quad\left(-15 \div\right.$ Al13) ${ }^{\text {PSI }}$
Al13	-	30.00	30.00	Pr2	Probe 4 readout at $20 \mathrm{~mA} / 5 \mathrm{~V}$	(Al12 $\div 100.00$) ${ }^{\text {BAR }}$ (Al12 $\left.\div 750\right)^{\text {PSI }}$
Al14	-	0.0	0.0	Pr2	Probe 4 calibration	(dEU=bar ${ }^{\circ}{ }^{\circ}$ C) $-12.0 \div 12.0$ (deU=PSI ${ }^{\circ}{ }^{\circ}$ F) $-120 \div$ 120
Al15	ALr	ALr	ALr	Pr2	Alarm relay for regulation faulty probe	nu - ALr - ALr1 - ALr2
Al16	ntc	Ntc	Ntc	Pr1	Probe 5 setting (ntc/ptc)	ptc(0) - ntc(1)
Al17	nu	nu	nu	Pr1	Probe 5 action type	nu = not used ; Au1 = Probe for AUX1 thermostat; Au2 = Probe for AUX2 thermostat; Au3 = Probe for AUX3 thermostat; Au4 = Probe for AUX4 thermostat; otC1 = dynamic set point for delivery - circuit 1 otC2 $=$ dynamic set point for delivery - circuit 2 otA1 = dynamic set point for suction - circuit 1 otA2 $=$ dynamic set point for suction - circuit 2
Al18	0,0	0.0	0.0	Pr1	Probe 5 calibration	$\begin{aligned} & \text { (dEU=bar o } \left.\left.{ }^{\circ} \mathrm{C}\right)-12.0 \div 12.0 \quad \text { (dEU=PSI } 0^{\circ} \mathrm{F}\right) \quad-120 \div \\ & 120 \end{aligned}$
Al19	ntc	Ntc	Ntc	Pr1	Probe 6 setting (ntc/ptc)	ptc(0) - ntc(1)
Al20	nu	nu	nu	Pr1	Probe 6 action type	nu = not used ; Au1 = Probe for AUX1 thermostat; Au2 $=$ Probe for AUX2 thermostat; Au3 = Probe for AUX3 thermostat; Au4 = Probe for AUX4 thermostat; otC1 = dynamic set point for delivery - circuit 1 otC2 $=$ dynamic set point for delivery - circuit 2 otA1 = dynamic set point for suction - circuit 1 otA2 $=$ dynamic set point for suction - circuit 2
Al21	0,0	0.0	0.0	Pr1	Probe 6 calibration	$\begin{array}{lll} \hline\left(\text { deUU=bar } 0^{\circ} \mathrm{C}\right)-12.0 \div 12.0 \\ 120 & \text { (dEU=PSI } \left.{ }^{\circ} \mathrm{F}\right) & -120 \div \\ \hline \end{array}$
Al22	ntc	NtC	Ntc	Pr1	Probe 7 setting (ntc/ptc)	ptc(0) - ntc(1)

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ D \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { XC } \\ 1015 \\ \text { D } \\ \hline \end{gathered}$	Level	Description	Range
Al23	nu	nu	nu	Pr1	Probe 7 action type	nu = not used ; Au1 = Probe for AUX1 thermostat; Au2 $=$ Probe for AUX2 thermostat; Au3 = Probe for AUX3 thermostat; Au4 = Probe for AUX4 thermostat; otC1 = dynamic set point for delivery - circuit 1 otC2 $=$ dynamic set point for delivery - circuit 2 otA1 = dynamic set point for suction - circuit 1 otA2 $=$ dynamic set point for suction - circuit 2
Al24	0,0	0.0	0.0	Pr1	Probe 7 calibration	$\begin{aligned} & \text { (deU=bar } \left.\left.{ }^{\circ} \mathrm{C}\right)-12.0 \div 12.0 \quad \text { (dEU=PSI } 0^{\circ} \mathrm{F}\right) \quad-120 \div \\ & 120 \end{aligned}$
Al25	ntc	Ntc	Ntc	Pr1	Probe 8 setting (ntc/ptc)	ptc(0) - ntc(1)
Al26	nu	nu	nu	Pr1	Probe 8 action type	nu = not used ; Au1 = Probe for AUX1 thermostat; Au2 $=$ Probe for AUX2 thermostat; Au3 = Probe for AUX3 thermostat; Au4 = Probe for AUX4 thermostat; otC1 = dynamic set point for delivery - circuit 1 otC2 $=$ dynamic set point for delivery - circuit 2 otA1 = dynamic set point for suction - circuit 1 otA2 $=$ dynamic set point for suction - circuit 2
Al27	0,0	0.0	0.0	Pr1	Probe 8 calibration	$\begin{aligned} & \left.\left(\text { deU=bar } 0^{\circ} \mathrm{C}\right)-12.0 \div 12.0 \quad \text { (dEU=PSI } 0^{\circ} \mathrm{F}\right)-120 \div \\ & 120 \end{aligned}$
Al28	ALr	ALr	ALr	Pr1	Alarm relay for AUX faulty probe	nu - ALr - ALr1 - ALr2
DI2	cL	CL	CL	Pr2	LP swtich polarity - circuit 1	OP - CL
D13	-	CL	CL	Pr2	LP swtich polarity - circuit 2	OP - CL
D14	cL	CL	CL	Pr2	HP swtich polarity - circuit 1	OP - CL
DI5	-	CL	CL	Pr2	HP swtich polarity - circuit 2	OP - CL
DI6	ALr	ALr	ALr	Pr2	Relay for pressure switch alarm	nu - ALr - ALr1 - ALr2
DI7	cL	CL	CL	Pr2	Safe input polarity compressor circuit 1	OP - CL
D18	-	CL	CL	Pr2	Safe input polarity compressor circuit 2	OP - CL
D19	cL	CL	CL	Pr2	Safety input polarity fan circuit 1	OP - CL
DI10	-	CL	CL	Pr2	Safety input polarity fan circuit 2	OP - CL
DI11	no	NO	NO	Pr2	Manual restart for compressor alarm	no - YES
DI12	no	NO	NO	Pr2	Manual restart for fan alarm	no - YES
D113	ALr	ALr	ALr	Pr2	Relay for compressor or fan alarm	nu - ALr - ALr1 - ALr2
DI14	CL	CL	CL	Pr1	Polarity of configurable digital input 1	OP - CL
DI15	LL1	LL1	LL1	Pr1	Function of configurable digital input 1	$\begin{aligned} & \text { ES1 - ES2 - OFF1 - OFF2 - LL1 - LL2 -noCRO } \\ & \text { - noSTD1- noSTD2 } \end{aligned}$
DI16	10	20	20	Pr1	Delay of configurable digital input 1	$0 \div 255$ (min)
D117	CL	CL	CL	Pr1	Polarity of configurable digital input 2	OP - CL
DI18	ES1	ES1	ES1	Pr1	Function of configurable digital input 2	$\begin{aligned} & \text { ES1 - ES2 - OFF1 - OFF2 - LL1 - LL2 -noCRO } \\ & \text { - noSTD1- noSTD2 } \end{aligned}$
DI19	0	0	0	Pr1	Delay of configurable digital input 2	$0 \div 255$ (min)
DI20	CL	CL	CL	Pr1	Polarity of configurable digital input 3	OP - CL
DI21	LL2	LL2	LL2	Pr1	Function of configurable digital input 3	$\begin{aligned} & \text { ES1 - ES2 - OFF1 - OFF2 - LL1 - LL2 -noCRO } \\ & \text { - noSTD1- noSTD2 } \end{aligned}$
DI22	0	20	20	Pr1	Delay of configurable digital input 3	$0 \div 255$ (min)
DI23	CL	CL	CL	Pr1	Polarity of configurable digital input 4	OP - CL
DI24	ES2	ES2	ES2	Pr1	Function of configurable digital input 4	$\begin{aligned} & \text { ES1 - ES2 - OFF1 - OFF2 - LL1 - LL2 -noCRO } \\ & \text { - noSTD1- noSTD2 } \end{aligned}$
DI25	0	0	0	Pr1	Delay of configurable digital input 4	$0 \div 255$ (min)
DI26	ALr	ALr	ALr	Pr1	Relay for LL alarm - circuit 1	nu - ALr - ALr1 - ALr2
DI27	-	ALr	ALr	Pr1	Relay for LL alarm - circuit 2	nu - ALr - ALr1 - ALr2
CP1	4.0	4.0	4.0	Pr1	Regulation band width circuit 1	(BAR) $0.10 \div 10.00$ (($\left.{ }^{\circ} \mathrm{C}\right)$ (F) $0.0 \div 250$ (PSI) $1 \div 80$

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ \text { D } \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ \text { D } \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \text { D } \end{gathered}$	Level	Description	Range
CP2	-40,0	-40.0	-40.0	Pr1	Minimum set point circuit 1	BAR: (AI2 \div SETC1); ${ }^{\circ} \mathrm{C}:(-50.0 \div$ SETC1); PSI : (AI2 \div SETC1); ${ }^{\circ} \mathrm{F}:(-58.0 \div$ SETC1)
CP3	10,0	10.0	10.0	Pr1	Maximum set point circuit 1	BAR: (SETC1 $\div \mathrm{Al3})$; ${ }^{\circ} \mathrm{C}:($ (SETC1 $\div 150.0$); PSI : (SETC1 $\div \mathrm{Al3})$; ${ }^{\circ} \mathrm{F}:($ SETC1 $\div 302)$
CP4	0	0.0	0.0	Pr1	Energy saving circuit 1	$\begin{aligned} & \text { (BAR) } \left.-20.00 \div 20.00 \text { (}{ }^{\circ} \mathrm{C}\right)-50.0 \div 50.0 \text { (PSI) }-300 \div 300 \\ & \text { (} \left.{ }^{\circ} \mathrm{F}\right)-90 \div 90 \end{aligned}$
CP5	-	5.0	5.0	Pr1	Regulation band width circuit 2	(BAR) $0.10 \div 10.00$ ($\left.{ }^{\circ} \mathrm{C}\right) ~$ (F$)$ (F) $1 \div 50$ (PSI) $1 \div 80$
CP6	-	-40.0	-40.0	Pr1	Minimum set point circuit 2	BAR: (Al5 \div SETC2); ${ }^{\circ} \mathrm{C}:(-50.0 \div$ SETC2); PSI : (AI5 \div SETC2); ${ }^{\circ} \mathrm{F}:(-58.0 \div$ SETC2)
CP7	-	10.0	10.0	Pr1	Maximum set point circuit 2	BAR: (SETC2 \div AI6); ${ }^{\circ} \mathrm{C}:($ (SETC2 $\div 150.0)$; PSI : (SETC2 \div AI6); ${ }^{\circ} \mathrm{F}:($ SETC2 $\div 302)$
CP8	-	0.0	0.0	Pr1	Energy saving circuit 2	$\begin{aligned} & \text { (BAR) }-20.00 \div 20.00 \text { (}{ }^{\circ} \text { C) }-50.0 \div 50.0 \text { (PSI) }-300 \div 300 \\ & \text { ('F) }-90 \div 90 \end{aligned}$
CP9	5	5	5	Pr1	2 start compressor delay	$0 \div 255$ (min)
CP10	2	2	2	Pr1	Minimum time load off	$0 \div 255$ (min)
CP11	15	15	15	Pr1	2 different load start delay	$0 \div 99.5$ (min.1sec)
CP12	5	5	5	Pr1	2 different load off delay	$0 \div 99.5$ (min.1sec)
CP13	15	15	15	Pr1	Minimum time load on	$0 \div 99.5$ (min.1sec)
CP14	0	nu	nu	Pr1	Maximum time load on (0=nu)	$0 \div 24$ (h) - with 0 the function is disabled
CP15	0	0	0	Pr1	Min time Frq1-2 off after CP14	$0 \div 255$ (min)
CP16	no	NO	NO	Pr1	CP11 enabled also at first on	no - YES
CP17	no	NO	NO	Pr1	CP12 enabled also at first off	no - YES
CP18	10	10	10	Pr1	Output delay at power on	$0 \div 255$ (sec)
CP19	-	NO	NO	Pr2	Booster function enabled	no - YES
F1	4,0	4.0	4.0	Pr1	Regulation band width circuit 1	(BAR) $0.10 \div 10.00$ ($\left.{ }^{\circ} \mathrm{C}\right)$ ($\left.{ }^{(} \mathrm{F}\right)$ $1 \div 50.0$
F2	10,0	10.0	10.0	Pr1	Minimum set point circuit 1	BAR: (AI9 \div SETF1); ${ }^{\circ} \mathrm{C}:(-50.0 \div$ SETF1); PSI : (Al9 \div SETF1); ${ }^{\circ} \mathrm{F}:(-58.0 \div$ SETF1)
F3	60,0	60.0	60.0	Pr1	Maximum set point circuit 1	BAR: (SETF1 \div Al10); ${ }^{\circ} \mathrm{C}:($ SETF1 $\div 150.0$); PSI : (SETF1 \div Al10); ${ }^{\circ} \mathrm{F}:($ (SETF1 $\div 302$)
F4	0,0	0.0	0.0	Pr1	Energy saving circuit 1	$\begin{aligned} & \text { (BAR) }-20.00 \div 20.00 \text { (}{ }^{\circ} \mathrm{C} \text {) }-50.0 \div 50.0 \text { (PSI) - } \\ & \left.300 \div 300 \text { (}{ }^{\circ} \mathrm{F}\right)-90 \div 90 \end{aligned}$
F5	-	4.0	4.0	Pr1	Regulation band width circuit 2	(BAR) $0.10 \div 10.00$ (${ }^{\circ}$ C) $0.0 \div 30.0$ (PSI) $1 \div 80$ ((F) $1 \div 50.0$
F6	-	10.0	10.0	Pr1	Minimum set point circuit 2	BAR: (Al12 \div SETF2); ${ }^{\circ} \mathrm{C}:(-50.0 \div$ SETF2); PSI : (Al12 \div SETF2); ${ }^{\circ} \mathrm{F}:(-58.0 \div$ SETF2)
F7	-	60.0	60.0	Pr1	Maximum set point circuit 2	$\begin{aligned} & \text { BAR: (SETF2 } \div \text { Al13); }{ }^{\circ} \mathrm{C}:(\text { SETF2 } \div 150.0) \text {; } \\ & \text { PSI : (SETF2 } \div \text { Al13); }{ }^{\circ} \mathrm{F}:(\text { (SETF2 } \div 302) \\ & \hline \end{aligned}$
F8	-	0.0	0.0	Pr1	Energy saving circuit 2	$\begin{aligned} & \text { (BAR) } \left.-20.00 \div 20.00 \text { (}{ }^{\circ} \mathrm{C}\right)-50.0 \div 50.0 \text { (PSI) - } \\ & \left.300 \div 300 \text { (}{ }^{\circ} \mathrm{F}\right) ~-90 \div 90 \end{aligned}$
F9	15	15	15	Pr1	2 different fan start delay	$1 \div 255$ (sec)
F10	5	5	5	Pr1	2 different fan off delay	$1 \div 255$ (sec)
HS1	nu	nu	nu	Pr1	Energy Saving start time on Monday	0:0 $-23.5 \mathrm{~h} ; \mathrm{nu}$
HS2	00,00	00:00	00:00	Pr1	Monday Energy Saving duration	0:0 -23.5 h ;
HS3	nu	nu	nu	Pr1	Energy Saving start time on Tuesday	0:0 $-23.5 \mathrm{~h} ; \mathrm{nu}$
HS4	00,00	00:00	00:00	Pr1	Tuesday Energy Saving duration	0:0 -23.5 h ;
HS5	nu	nu	nu	Pr1	Energy Saving start time on Wednesday	0:0 $-23.5 \mathrm{~h} ; \mathrm{nu}$
HS6	00,00	00:00	00:00	Pr1	Wednesday Energy Saving duration	0:0 $-23.5 \mathrm{~h} ;$
HS7	nu	nu	nu	Pr1	Energy Saving start time on Thursday	0:0 $-23.5 \mathrm{~h} ; \mathrm{nu}$
HS8	00,00	00:00	00:00	Pr1	Thursday Energy Saving duration	0:0 $-23.5 \mathrm{~h} ;$
HS9	nu	nu	nu	Pr1	Energy Saving start time on Friday	0:0 $\div 23.5 \mathrm{~h} ; \mathrm{nu}$
HS10	00,00	00:00	00:00	Pr1	Friday Energy Saving duration	0:0 $\div 23.5 \mathrm{~h} ;$
HS11	nu	nu	nu	Pr1	Energy Saving start time on Saturday	0:0 $\div 23.5 \mathrm{~h} ; \mathrm{nu}$
HS12	00,00	00:00	00:00	Pr1	Saturday Energy Saving duration	0:0 -23.5 h ;

Nome	$\begin{gathered} \mathrm{XC} \\ 1008 \\ \mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ D \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \text { D } \\ \hline \end{gathered}$	Level	Description	Range
HS13	nu	nu	nu	Pr1	Energy Saving start time on Sunday	0:0ㄴ23.5h; nu
HS14	00,00	00:00	00:00	Pr1	Sunday Energy Saving duration	0:0 -23.5 h ;
AC1	30	30	30	Pr1	Probe 1 alarm delay at power on	$0 \div 255$ (min)
AC2	-	30	30	Pr1	Probe 2 alarm delay at power on	$0 \div 255$ (min)
AC3	15,0	15.0	15.0	Pr1	Minimum temp/press alarm circuit 1	$\begin{aligned} & \begin{array}{l} (0.10 \div 30.00)^{\mathrm{BAR}} \quad(0.0 \div 100.0)^{\circ} \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}} \\ (1 \div 200.0)^{\circ} \mathrm{F} \end{array} \\ & \hline \end{aligned}$
AC4	20,0	20.0	20.0	Pr1	Maximum temp/press alarm circuit 1	$\begin{aligned} & \begin{array}{l} (0.10 \div 30.00)^{\mathrm{BAR}} \quad(0.0 \div 100.0)^{\circ} \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}} \\ (1 \div 200.0)^{\circ} \mathrm{F} \end{array} \\ & \hline \end{aligned}$
AC5	20	20	20	Pr1	Temp/press alarm delay circuit 1	$0 \div 255$ (min)
AC6	-	15.0	15.0	Pr1	Minimum temp/press alarm circuit 2	$\begin{aligned} & (0.10 \div 30.00)^{\text {BAR }} \quad(0.0 \div 100.0)^{\circ} \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}} \\ & (1 \div 200.0)^{\circ} \mathrm{F} \end{aligned}$
AC7	-	20.0	20.0	Pr1	Maximum temp/press alarm circuit 2	
AC8	-	20	20	Pr1	Temp/press alarm delay circuit 2	$0 \div 255$ (min)
AC9	ALr	ALr	ALr	Pr1	Relay for temp/press alarm	nu - ALr - ALr1 - ALr2
AC10	20000	20000	20000	Pr1	Running hours for maintenance	$0 \div 25000$ - with 0 the function is disabled
AC11	ALr	ALr	ALr	Pr1	Relay for maintenance alarm	nu - ALr - ALr1 - ALr2
AC12	15	15	15	Pr1	LP switch 1 activation number	$0 \div 15$
AC13	15	15	15	Pr1	LP switch 1 activation time	$0 \div 255$ (min)
AC14	2	2	2	Pr1	Compressure on-faulty probe1	$0 \div 15$
AC16	-	15	15	Pr1	LP switch 2 activation number	$0 \div 15$
AC17	-	15	15	Pr1	LP switch 2 activation time	$0 \div 255$ (min)
AC18	-	2	2	Pr1	Compressure on-faulty probe2	$0 \div 15$
AF1	20,0	20.0	20.0	Pr1	Minimum temp/press alarm circuit 1	$\begin{aligned} & \begin{array}{l} (0.10 \div 30.00)^{\mathrm{BAR}} \quad(0.0 \div 100.0)^{\circ} \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}} \\ (1 \div 200.0)^{\circ} \mathrm{F} \end{array} \\ & \hline \end{aligned}$
AF2	20,0	20.0	20.0	Pr1	Maximum temp/press alarm circuit 1	$\begin{aligned} & (0.10 \div 30.00)^{\text {BAR }} \quad(0.0 \div 100.0)^{\circ} \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}} \\ & (1 \div 200.0)^{\circ} \mathrm{F} \end{aligned}$
AF3	20	20	20	Pr1	Temp/press alarm delay circuit 1	$0 \div 255$ (min)
AF4	no	NO	NO	Pr1	Compressor off with max alarm 1	no - YES
AF5	2	2	2	Pr1	Off delay with max alarm 1	$0 \div 255$ (min)
AF6	15	15	15	Pr1	HP switch 1 activation number	$0 \div 15$
AF7	15	15	15	Pr1	HP switch 1 activation time	$0 \div 255$ (min)
AF8	2	2	2	Pr1	Fans on with faulty probe 3	$0 \div 15$
AF9	-	20.0	20.0	Pr1	Minimum temp/press alarm circuit 2	$\begin{aligned} & (0.10 \div 30.00)^{\mathrm{BAR}} \quad(0.0 \div 100.0)^{\circ \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}}} \begin{array}{l} (1 \div 200.0)^{\circ} \mathrm{F} \end{array} \\ & \hline \end{aligned}$
AF10	-	20.0	20.0	Pr1	Maximum temp/press alarm circuit 2	$\begin{aligned} & \begin{array}{l} (0.10 \div 30.00)^{\mathrm{BAR}} \quad(0.0 \div 100.0)^{\circ} \mathrm{C} \quad(1 \div 430)^{\mathrm{PSI}} \\ (1 \div 200.0)^{\circ} \mathrm{F} \end{array} \\ & \hline \end{aligned}$
AF11	-	20	20	Pr1	Temp/press alarm delay circuit 2	$0 \div 255$ (min)
AF12	-	NO	NO	Pr1	Compressor off with max alarm 2	no - YES
AF13	-	2	2	Pr1	Off delay with max alarm 2	$0 \div 255$ (min)
AF14	-	15	15	Pr1	HP switch 2 activation number	$0 \div 15$
AF15	-	15	15	Pr1	HP switch 2 activation time	$0 \div 255$ (min)
AF16	-	2	2	Pr1	Fans on with faulty probe 3	$0 \div 15$
AF17	ALr	ALr	ALr	Pr1	Relay for temp/press alarm	nu - ALr - ALr1 - ALr2
01	no	NO	NO	Pr2	Dynamic set enabled - circuit 1	no - YES
02	-18,0	-18.0	-18.0	Pr2	Maximum set for circuit 1	SETC1 - CP3
03	15,0	15.0	15.0	Pr2	Dynamic set start temperature circuit 1	$-40 \div 04^{\circ} \mathrm{C} /-40 \div 04^{\circ} \mathrm{F}$
04	15,0	15.0	15.0	Pr2	Dynamic set stop temperature circuit 1	O3 $\div 150^{\circ} \mathrm{C} / 03 \div 302^{\circ} \mathrm{F}$
05	-	NO	NO	Pr2	Dynamic set enabled - circuit 2	no - YES
06	-	-18.0	-18.0	Pr2	Maximum set for circuit 2	SETC2 \div CP7
07	-	15.0	15.0	Pr2	Dynamic set start temperature circuit 2	$-40 \div 08^{\circ} \mathrm{C} /-40 \div 08^{\circ} \mathrm{F}$
08	-	15.0	15.0	Pr2	Dynamic set stop temperature circuit 2	07 $\div 150^{\circ} \mathrm{C} / 07 \div 302^{\circ} \mathrm{F}$
09	no	NO	NO	Pr2	Dynamic set enabled - circuit 1	no - YES
010	25,0	25.0	25.0	Pr2	Minimum condens. set - circuit 1	F2 \div SETF1
011	15	15.0	15.0	Pr2	Differential dynamic set-circuit 1	(BAR) -20.00 $\div 20.00\left({ }^{\circ} \mathrm{C}\right)-50.0 \div 50.0$ (PSI) -

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ D \\ \hline \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \mathrm{D} \\ \hline \end{gathered}$	Level	Description	Range
						$300 \div 300$ (${ }^{\circ} \mathrm{F}$) $-90 \div 90$
012	-	NO	NO	Pr2	Dynamic set enabled - circuit 2	no - YES
013	-	25.0	25.0	Pr2	Minimum condens. set - circuit 2	F6 \div SETF2
014	-	15.0	15.0	Pr2	Differential dynamic set-circuit 2	$\begin{aligned} & \text { (BAR) }-20.00 \div 20.00\left({ }^{\circ} \mathrm{C}\right)-50.0 \div 50.0 \text { (PSI) - } \\ & 300 \div 300 \text { (}{ }^{\circ} \mathrm{F} \text {) }-90 \div 90 \end{aligned}$
1Q1	4.20 mA	4.20 mA	4.20 mA	Pr1	Analog outputs 1-2 setting	$4.20 \mathrm{~mA}(0)-0.10 \mathrm{~V}(1)$
1Q2	nu	nu	nu	Pr1	Analog output 1 function	$\begin{aligned} & \text { FREE - CPR - CPR2 - FAN - FAN2 - INVF1- } \\ & \text { INVF2 - nu } \end{aligned}$
1Q3	Pbc1	Pbc1	Pbc1	Pr1	Probe for analog output 1	Pbc1(0) - Pbc2(1) ; used only with 1Q2 = 0
1Q4	0.0	0.0	0.0	Pr1	Lower limit for analog output 1	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
1Q5	100.0	100.0	100.0	Pr1	Upper limit for analog output 1	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
1Q6	30	50	50	Pr1	Minimum value for analog output 1	$0 \div 100$ \%
1Q7	40	50	50	Pr1	Analog output 1 value after compressor start	1Q6 $\div 100$ \%
1Q8	40	60	60	Pr1	Analog output 1 value after compressor off	$106 \div 100$ \%
1Q9	40	50	50	Pr1	Exclusion band start value 1	1Q7 $\div 100$ \%
1Q10	40	50	50	Pr1	Exclusion band end value 1	1Q9 $\div 100 \%$
1Q11	50	50	50	Pr1	Safety value for Analog output 1	0 $\div 100$ (\%)
1Q12	0	0	0	Pr1	Regulation delay after exit from neutral zone	$0 \div 255$ (sec)
1Q13	60	60	60	Pr1	Analog output 1 rise time	$0 \div 255$ (sec)
1Q14	10	10	10	Pr1	Analog output 1 permanency before load activation	$0 \div 255$ (sec)
1Q15	0	2	2	Pr1	Analog output 1 decreasing delay	$0 \div 255$ (sec)
1Q16	150	5	5	Pr1	Analog output 1 decreasing time	$0 \div 255$ (sec)
1Q17	10	5	5	Pr1	Analog output 1 permanency before load off	$0 \div 255$ (sec)
1Q18	5	5	5	Pr1	Analog output 1 decreasing time after load off	$0 \div 255$ (sec)
1Q19	4.0	4.0	4.0	Pr1	Regulation band width 1	$\begin{aligned} & 0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; \\ & 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA} \end{aligned}$
1Q20	350	350	350	Pr1	Integral time 1	$0 \div 999 \mathrm{~s}$; with 0 integral action excluded
1Q21	0.0	0.0	0.0	Pr1	Band offset 1	$\begin{aligned} & \left(-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-\right. \\ & 120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA} \end{aligned}$
1Q22	4.0	4.0	4.0	Pr1	Anti reset wind-up 1	$\begin{aligned} & 0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; \\ & 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA} \end{aligned}$
1Q24	0	0	0	Pr1	Minimum capacity of inverter 1	0 $\div 99 \%$; with 0 function excluded
1Q25	255	255	255	Pr1	Maximum time at minimum capacity of inverter 1	$1 \div 255$ min
1Q26	2	2	2	Pr1	Time at maximum capacity of inverter 1	$1 \div 255$ min
2Q1	-	nu	nu	Pr1	Analog output 2 function	$\begin{aligned} & \text { FREE - CPR - CPR2 - FAN - FAN2 - INVF1- } \\ & \text { INVF2 - nu } \end{aligned}$
2Q2	-	Pbc2	Pbc2	Pr1	Probe for analog output 2	Pbc1(0) - Pbc2(1) ; usata solo quando 2Q2 = 0
2Q3	-	0.0	0.0	Pr1	Lower limit for analog output 2	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
2Q4	-	100.0	100.0	Pr1	Upper limit for analog output 2	$\begin{aligned} & \hline-1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ}{ }^{\circ} \mathrm{F} ; \\ & \hline \end{aligned}$
2Q5	-	50	50	Pr1	Minimum value for analog output 2	0 $\div 100$ (\%)
2Q6	-	50	50	Pr1	Analog output 2 value after compressor start	2Q5 $\div 100 \%$
2Q7	-	60	60	Pr1	Analog output 2 value after compressor off	2Q5 $\div 100$ \%
2Q8	-	50	50	Pr1	Exclusion band start value 2	2Q6 $\div 100$ \%
2Q9	-	50	50	Pr1	Exclusion band end value 2	2Q8 $\div 100$ \%

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \text { XC } \\ 1011 \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \text { D } \\ \hline \end{gathered}$	Level	Description	Range
2Q10	-	50	50	Pr1	Safety value for Analog output 2	0 $\div 100$ (\%)
2Q11	-	0	0	Pr1	Regulation delay after exit from neutral zone	$0 \div 255$ (sec)
2Q12	-	60	60	Pr1	Analog output 2 rise time	$0 \div 255$ (sec)
2Q13	-	10	10	Pr1	Analog output 2 permanency before load activation	$0 \div 255$ (sec)
2Q14	-	2	2	Pr1	Analog output 2 decreasing delay	$0 \div 255$ (sec)
2Q15	-	5	5	Pr1	Analog output 2 decreasing time	$0 \div 255$ (sec)
2Q16	-	5	5	Pr1	Analog output 2 permanency before load off	$0 \div 255$ (sec)
2Q17	-	5	5	Pr1	Analog output 2 decreasing time after load off	$0 \div 255$ (sec)
2Q18	-	4.0	4.0	Pr1	Regulation band width 2	$\begin{aligned} & 0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; \\ & 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA} \end{aligned}$
2Q19	-	350	350	Pr1	Integral time 2	0 $\div 999 \mathrm{~s}$; with 0 integral action excluded
2Q20	\cdot	0.0	0.0	Pr1	Band offset 2	$\begin{aligned} & -12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},- \\ & 120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA} \\ & \hline \end{aligned}$
2Q21	-	4.0	4.0	Pr1	Anti reset wind-up 2	$0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ;$ $0 \div 725 \mathrm{SII} ; 0 \div 5000 \mathrm{kPA}$
2Q23	-	0	0	Pr1	Minimum capacity of inverter 2	$0 \div 99 \%$; with 0 function excluded
2Q24	-	255	255	Pr1	Maximum time at minimum capacity of inverter 2	$1 \div 255$ min
2Q25	-	2	2	Pr1	Time at maximum capacity of inverter 2	$1 \div 255$ min
3Q1	4.20 mA	4.20 mA	4.20 mA	Pr1	Analog outputs 3-4 setting	$4.20 \mathrm{~mA}(0)-0.10 \mathrm{~V}(1)$
3Q2	nu	nu	nu	Pr1	Analog output 3 function	$\begin{aligned} & \hline \text { FREE - CPR - CPR2 - FAN - FAN2 - INVF1 - } \\ & \text { INVF2 - nu } \end{aligned}$
3Q3	Pbc3	Pbc3	Pbc3	Pr1	Probe for analog output 3	$\operatorname{Pbc} 3(0)$; $\mathrm{Pbc4(1)}$; used with 3Q2 $=0$
3Q4	0.0	0.0	0.0	Pr1	Lower limit for analog output 3	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
3Q5	100.0	100.0	100.0	Pr1	Upper limit for analog output 3	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
3Q6	30	50	50	Pr1	Minimum value for analog output 3	$0 \div 100$ (\%)
3Q7	40	50	50	Pr1	Analog output 3 value after fan start	3Q6 $\div 100$ \%
3Q8	40	70	70	Pr1	Analog output 3 value after fan off	3Q6 $\div 100$ \%
3Q9	40	50	50	Pr1	Exclusion band start value 3	3Q7 $\div 100$ \%
3Q10	40	50	50	Pr1	Exclusion band end value 3	3Q9 $\div 100$ \%
3Q11	50	50	50	Pr1	Safety value for Analog output 3	0 $\div 100$ (\%)
3Q12	0	0	0	Pr1	Regulation delay after exit from neutral zone	$0 \div 255$ (sec)
3Q13	60	60	60	Pr1	Analog output 3 rise time	$0 \div 255$ (sec)
3Q14	10	10	10	Pr1	Analog output 3 permanency before load activation	$0 \div 255$ (sec)
3Q15	0	0	0	Pr1	Analog output 3 decreasing delay	$0 \div 255$ (sec)
3Q16	150	15	15	Pr1	Analog output 3 decreasing time	$0 \div 255$ (sec)
3Q17	10	5	5	Pr1	Analog output 3 permanency before load off	$0 \div 255$ (sec)
3Q18	5	5	5	Pr1	Analog output 3 decreasing time after load off	$0 \div 255$ (sec)
3Q19	4.0	4.0	4.0	Pr1	Regulation band width 3	$\begin{aligned} & 0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; \\ & 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA} \end{aligned}$
3Q20	500	500	500	Pr1	Integral time 3	$0 \div 999 \mathrm{~s}$; with 0 integral action excluded
3Q21	0.0	0.0	0.0	Pr1	Band offset 3	$\begin{aligned} & \left(-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-\right. \\ & 120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA} \\ & \hline \end{aligned}$
3Q22	4.0	4.0	4.0	Pr1	Anti reset wind-up 3	$\begin{aligned} & 0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; \\ & 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA} \end{aligned}$
3Q24	0	0	0	Pr1	Minimum capacity of inverter 3	0 $\div 99 \%$; with 0 function excluded

Nome	$\begin{gathered} \text { XC } \\ 1008 \\ \text { D } \end{gathered}$	$\begin{gathered} \hline \text { XC } \\ 1011 \\ D \end{gathered}$	$\begin{gathered} \text { XC } \\ 1015 \\ \text { D } \end{gathered}$	Level	Description	Range
3Q25	255	255	255	Pr1	Maximum time at minimum capacity of inverter 3	$1 \div 255$ min
3Q26	2	2	2	Pr1	Time at maximum capacity of inverter 3	$1 \div 255$ min
4Q1	-	nu	nu	Pr1	Analog output 4 function	$\begin{aligned} & \hline \text { FREE - CPR - CPR2 - FAN - FAN2 - INVF1- } \\ & \text { INVF2 - nu } \\ & \hline \end{aligned}$
4Q2	-	Pbc4	Pbc4	Pr1	Probe for analog output 4	Pbc3(0); Pbc4(1); used with 4Q1 = 0
4Q3	-	0.0	0.0	Pr1	Lower limit for analog output 4	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
4Q4	-	100.0	100.0	Pr1	Upper limit for analog output 4	$\begin{aligned} & -1 \div 100.00 \text { bar; }-15 \div 750 \mathrm{PSI} ;-50 \div 150^{\circ} \mathrm{C} ;- \\ & 58 \div 302^{\circ} \mathrm{F} ; \end{aligned}$
4Q5	-	50	50	Pr1	Minimum value for analog output 4	$0 \div 100$ (\%)
4Q6	-	50	50	Pr1	Analog output 4 value after fan start	4Q5 $\div 100$ \%
4Q7	-	70	70	Pr1	Analog output 4 value after fan off	4Q5 $\div 100$ \%
4Q8	-	50	50	Pr1	Exclusion band start value 4	4Q6 $\div 100$ \%
4Q9	-	50	50	Pr1	Exclusion band end value 4	4Q8 $\div 100$ \%
4Q10	-	50	50	Pr1	Safety value for Analog output 4	0 $\div 100$ (\%)
4Q11	-	0	0	Pr1	Regulation delay after neutral zone exit	$0 \div 255$ (sec)
4Q12	-	60	60	Pr1	Analog output 4 rise time	$0 \div 255$ (sec)
4Q13	-	10	10	Pr1	Analog output 4 permanency before load activation	$0 \div 255$ (sec)
4Q14	-	0	0	Pr1	Analog output 4 decreasing delay	$0 \div 255$ (sec)
4Q15	-	15	15	Pr1	Analog output 4 decreasing time	$0 \div 255$ (sec)
4Q16	-	5	5	Pr1	Analog output 4 perm before load off	$0 \div 255$ (sec)
4Q17	-	5	5	Pr1	Analog output 4 decreasing time after load off	$0 \div 255$ (sec)
4Q18	-	4.0	4.0	Pr1	Regulation band width 4	$\begin{aligned} & 0.10 \div 25.00 \mathrm{bar} ; 0.0 \div 25.0^{\circ} \mathrm{C} ; 1 \div 250 \mathrm{PSI} ; \\ & 1 \div 250^{\circ} \mathrm{F} ; 10 \div 2500 \mathrm{KPA} \end{aligned}$
4Q19	-	500	500	Pr1	Integral time 4	$0 \div 999 \mathrm{~s}$; with 0 integral action excluded
4Q20	-	0.0	0.0	Pr1	Band offset 4	$\begin{aligned} & \left(-12.0 \div 12.0^{\circ} \mathrm{C}-12.00 \div 12.00 \mathrm{BAR},-\right. \\ & 120 \div 120^{\circ} \mathrm{F},-120 \div 120 \mathrm{PSI} ;-1200 \div 1200 \mathrm{KPA} \end{aligned}$
4Q21	-	4.0	4.0	Pr1	Anti reset wind-up 4	$\begin{aligned} & 0.0 \div 99.0^{\circ} \mathrm{C} ; 0 \div 180^{\circ} \mathrm{F} ; 0.00 \div 50,00 \mathrm{bar} ; \\ & 0 \div 725 \mathrm{PSI} ; 0 \div 5000 \mathrm{kPA} \end{aligned}$
4Q23	-	0	0	Pr1	Minimum capacity of inverter 4	$0 \div 99 \%$; with 0 function excluded
4Q24	-	255	255	Pr1	Maximum time at minimum capacity of inverter 4	1 $\div 255$ min
4Q25		2	2	Pr1	Time at maximum capacity of inverter 4	$1 \div 255$ min
AR1	0,0	0,0	0,0	0,0	Set point aux relay 1	$-40 \div 110^{\circ} \mathrm{C} /-40 \div 230^{\circ} \mathrm{F}$
AR2	1,0	1,0	1,0	1,0	Differential for aux relay 1	$0,1 \div 25,0^{\circ} \mathrm{C} / 1 \div 50^{\circ} \mathrm{F}$
AR3	CL	CL	CL	CL	Kind of aciton for aux 1	$\mathrm{CL}=$ cooling; $\mathrm{Ht}=$ heating
AR4	0,0	0,0	0,0	0,0	Set point aux relay 2	$-40 \div 110^{\circ} \mathrm{C} /-40 \div 230^{\circ} \mathrm{F}$
AR5	1,0	1,0	1,0	1,0	Differential for aux relay 2	$0,1 \div 25,0^{\circ} \mathrm{C} / 1 \div 50^{\circ} \mathrm{F}$
AR6	CL	CL	CL	CL	Kind of aciton for aux 2	$\mathrm{CL}=$ cooling; $\mathrm{Ht}=$ heating
AR7	0,0	0,0	0,0	0,0	Set point aux relay 3	$-40 \div 110^{\circ} \mathrm{Cl}-40 \div 230^{\circ} \mathrm{F}$
AR8	1,0	1,0	1,0	1,0	Differential for aux relay 3	0,1 $25,0^{\circ} \mathrm{C} / 1 \div 50^{\circ} \mathrm{F}$
AR9	CL	CL	CL	CL	Kind of aciton for aux 3	$\mathrm{CL}=$ cooling; $\mathrm{Ht}=$ heating
AR10	0,0	0,0	0,0	0,0	Set point aux relay 4	$-40 \div 110^{\circ} \mathrm{Cl}-40 \div 230^{\circ} \mathrm{F}$
AR11	1,0	1,0	1,0	1,0	Differential for aux relay 4	$0,1 \div 25,0^{\circ} \mathrm{C} / 1 \div 50^{\circ} \mathrm{F}$
AR12	CL	CL	CL	CL	Kind of aciton for aux 4	$\mathrm{CL}=$ cooling; $\mathrm{Ht}=$ heating
OT1	yES	yES	yES	yES	Alarm relay off by keyboard	no - YES
OT2	CL	CL	CL	CL	Alarm relay polarity	OP - CL
OT3	yES	yES	yES	yES	Alarm relay 1 off by keyboard	no - YES
OT4	OP	OP	OP	OP	Alarm relay 1 polarity	OP - CL
OT5	yES	yES	yES	yES	Alarm relay 2 off by keyboard	no - YES
OT6	OP	OP	OP	OP	Alarm relay 2 polarity	OP - CL
OT7	1	1	1	1	Serial address	$1 \div 247$

Nome	XC $\mathbf{1 0 0 8}$ \mathbf{D}	XC $\mathbf{1 0 1 1}$ \mathbf{D}	XC $\mathbf{1 0 1 5}$ \mathbf{D}	Level	Description	Range
OT9	NO	NO	NO	NO	Off function enabling	no - YES

Dixell S.r.I. - 32010 Pieve d'Alpago (BL) ITALY - Z.I. Via dell'Industria, 27
Tel. +39.0437.9833 r.a. - Fax +39.0437.989313-www.dixell.com - dixell@emerson.com

